Step |
Hyp |
Ref |
Expression |
1 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
2 |
|
hmopf |
|- ( U e. HrmOp -> U : ~H --> ~H ) |
3 |
|
honegsub |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op ( -u 1 .op U ) ) = ( T -op U ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T +op ( -u 1 .op U ) ) = ( T -op U ) ) |
5 |
|
neg1rr |
|- -u 1 e. RR |
6 |
|
hmopm |
|- ( ( -u 1 e. RR /\ U e. HrmOp ) -> ( -u 1 .op U ) e. HrmOp ) |
7 |
5 6
|
mpan |
|- ( U e. HrmOp -> ( -u 1 .op U ) e. HrmOp ) |
8 |
|
hmops |
|- ( ( T e. HrmOp /\ ( -u 1 .op U ) e. HrmOp ) -> ( T +op ( -u 1 .op U ) ) e. HrmOp ) |
9 |
7 8
|
sylan2 |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T +op ( -u 1 .op U ) ) e. HrmOp ) |
10 |
4 9
|
eqeltrrd |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T -op U ) e. HrmOp ) |