Metamath Proof Explorer


Theorem hmopex

Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopex
|- HrmOp e. _V

Proof

Step Hyp Ref Expression
1 ovex
 |-  ( ~H ^m ~H ) e. _V
2 hmopf
 |-  ( t e. HrmOp -> t : ~H --> ~H )
3 ax-hilex
 |-  ~H e. _V
4 3 3 elmap
 |-  ( t e. ( ~H ^m ~H ) <-> t : ~H --> ~H )
5 2 4 sylibr
 |-  ( t e. HrmOp -> t e. ( ~H ^m ~H ) )
6 5 ssriv
 |-  HrmOp C_ ( ~H ^m ~H )
7 1 6 ssexi
 |-  HrmOp e. _V