Step |
Hyp |
Ref |
Expression |
1 |
|
hmop |
|- ( ( T e. HrmOp /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
2 |
1
|
3anidm23 |
|- ( ( T e. HrmOp /\ A e. ~H ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
3 |
2
|
eqcomd |
|- ( ( T e. HrmOp /\ A e. ~H ) -> ( ( T ` A ) .ih A ) = ( A .ih ( T ` A ) ) ) |
4 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
5 |
4
|
ffvelrnda |
|- ( ( T e. HrmOp /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
6 |
|
hire |
|- ( ( ( T ` A ) e. ~H /\ A e. ~H ) -> ( ( ( T ` A ) .ih A ) e. RR <-> ( ( T ` A ) .ih A ) = ( A .ih ( T ` A ) ) ) ) |
7 |
5 6
|
sylancom |
|- ( ( T e. HrmOp /\ A e. ~H ) -> ( ( ( T ` A ) .ih A ) e. RR <-> ( ( T ` A ) .ih A ) = ( A .ih ( T ` A ) ) ) ) |
8 |
3 7
|
mpbird |
|- ( ( T e. HrmOp /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. RR ) |