| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hmoval.8 | 
							 |-  H = ( HmOp ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							hmoval.9 | 
							 |-  A = ( U adj U )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq12 | 
							 |-  ( ( u = U /\ u = U ) -> ( u adj u ) = ( U adj U ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							anidms | 
							 |-  ( u = U -> ( u adj u ) = ( U adj U ) )  | 
						
						
							| 5 | 
							
								4 2
							 | 
							eqtr4di | 
							 |-  ( u = U -> ( u adj u ) = A )  | 
						
						
							| 6 | 
							
								5
							 | 
							dmeqd | 
							 |-  ( u = U -> dom ( u adj u ) = dom A )  | 
						
						
							| 7 | 
							
								5
							 | 
							fveq1d | 
							 |-  ( u = U -> ( ( u adj u ) ` t ) = ( A ` t ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq1d | 
							 |-  ( u = U -> ( ( ( u adj u ) ` t ) = t <-> ( A ` t ) = t ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							rabeqbidv | 
							 |-  ( u = U -> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } = { t e. dom A | ( A ` t ) = t } ) | 
						
						
							| 10 | 
							
								
							 | 
							df-hmo | 
							 |-  HmOp = ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } ) | 
						
						
							| 11 | 
							
								
							 | 
							ovex | 
							 |-  ( U adj U ) e. _V  | 
						
						
							| 12 | 
							
								2 11
							 | 
							eqeltri | 
							 |-  A e. _V  | 
						
						
							| 13 | 
							
								12
							 | 
							dmex | 
							 |-  dom A e. _V  | 
						
						
							| 14 | 
							
								13
							 | 
							rabex | 
							 |-  { t e. dom A | ( A ` t ) = t } e. _V | 
						
						
							| 15 | 
							
								9 10 14
							 | 
							fvmpt | 
							 |-  ( U e. NrmCVec -> ( HmOp ` U ) = { t e. dom A | ( A ` t ) = t } ) | 
						
						
							| 16 | 
							
								1 15
							 | 
							eqtrid | 
							 |-  ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } ) |