Step |
Hyp |
Ref |
Expression |
1 |
|
hmoval.8 |
|- H = ( HmOp ` U ) |
2 |
|
hmoval.9 |
|- A = ( U adj U ) |
3 |
|
oveq12 |
|- ( ( u = U /\ u = U ) -> ( u adj u ) = ( U adj U ) ) |
4 |
3
|
anidms |
|- ( u = U -> ( u adj u ) = ( U adj U ) ) |
5 |
4 2
|
eqtr4di |
|- ( u = U -> ( u adj u ) = A ) |
6 |
5
|
dmeqd |
|- ( u = U -> dom ( u adj u ) = dom A ) |
7 |
5
|
fveq1d |
|- ( u = U -> ( ( u adj u ) ` t ) = ( A ` t ) ) |
8 |
7
|
eqeq1d |
|- ( u = U -> ( ( ( u adj u ) ` t ) = t <-> ( A ` t ) = t ) ) |
9 |
6 8
|
rabeqbidv |
|- ( u = U -> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } = { t e. dom A | ( A ` t ) = t } ) |
10 |
|
df-hmo |
|- HmOp = ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } ) |
11 |
|
ovex |
|- ( U adj U ) e. _V |
12 |
2 11
|
eqeltri |
|- A e. _V |
13 |
12
|
dmex |
|- dom A e. _V |
14 |
13
|
rabex |
|- { t e. dom A | ( A ` t ) = t } e. _V |
15 |
9 10 14
|
fvmpt |
|- ( U e. NrmCVec -> ( HmOp ` U ) = { t e. dom A | ( A ` t ) = t } ) |
16 |
1 15
|
eqtrid |
|- ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } ) |