Step |
Hyp |
Ref |
Expression |
1 |
|
hmphen |
|- ( J ~= { (/) } -> J ~~ { (/) } ) |
2 |
|
df1o2 |
|- 1o = { (/) } |
3 |
1 2
|
breqtrrdi |
|- ( J ~= { (/) } -> J ~~ 1o ) |
4 |
|
hmphtop1 |
|- ( J ~= { (/) } -> J e. Top ) |
5 |
|
en1top |
|- ( J e. Top -> ( J ~~ 1o <-> J = { (/) } ) ) |
6 |
4 5
|
syl |
|- ( J ~= { (/) } -> ( J ~~ 1o <-> J = { (/) } ) ) |
7 |
3 6
|
mpbid |
|- ( J ~= { (/) } -> J = { (/) } ) |
8 |
|
id |
|- ( J = { (/) } -> J = { (/) } ) |
9 |
|
sn0top |
|- { (/) } e. Top |
10 |
|
hmphref |
|- ( { (/) } e. Top -> { (/) } ~= { (/) } ) |
11 |
9 10
|
ax-mp |
|- { (/) } ~= { (/) } |
12 |
8 11
|
eqbrtrdi |
|- ( J = { (/) } -> J ~= { (/) } ) |
13 |
7 12
|
impbii |
|- ( J ~= { (/) } <-> J = { (/) } ) |