| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmphen |  |-  ( J ~= { (/) } -> J ~~ { (/) } ) | 
						
							| 2 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 3 | 1 2 | breqtrrdi |  |-  ( J ~= { (/) } -> J ~~ 1o ) | 
						
							| 4 |  | hmphtop1 |  |-  ( J ~= { (/) } -> J e. Top ) | 
						
							| 5 |  | en1top |  |-  ( J e. Top -> ( J ~~ 1o <-> J = { (/) } ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( J ~= { (/) } -> ( J ~~ 1o <-> J = { (/) } ) ) | 
						
							| 7 | 3 6 | mpbid |  |-  ( J ~= { (/) } -> J = { (/) } ) | 
						
							| 8 |  | id |  |-  ( J = { (/) } -> J = { (/) } ) | 
						
							| 9 |  | sn0top |  |-  { (/) } e. Top | 
						
							| 10 |  | hmphref |  |-  ( { (/) } e. Top -> { (/) } ~= { (/) } ) | 
						
							| 11 | 9 10 | ax-mp |  |-  { (/) } ~= { (/) } | 
						
							| 12 | 8 11 | eqbrtrdi |  |-  ( J = { (/) } -> J ~= { (/) } ) | 
						
							| 13 | 7 12 | impbii |  |-  ( J ~= { (/) } <-> J = { (/) } ) |