Step |
Hyp |
Ref |
Expression |
1 |
|
hmphdis.1 |
|- X = U. J |
2 |
|
pwuni |
|- J C_ ~P U. J |
3 |
1
|
pweqi |
|- ~P X = ~P U. J |
4 |
2 3
|
sseqtrri |
|- J C_ ~P X |
5 |
4
|
a1i |
|- ( J ~= ~P A -> J C_ ~P X ) |
6 |
|
hmph |
|- ( J ~= ~P A <-> ( J Homeo ~P A ) =/= (/) ) |
7 |
|
n0 |
|- ( ( J Homeo ~P A ) =/= (/) <-> E. f f e. ( J Homeo ~P A ) ) |
8 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
9 |
|
imassrn |
|- ( f " x ) C_ ran f |
10 |
|
unipw |
|- U. ~P A = A |
11 |
10
|
eqcomi |
|- A = U. ~P A |
12 |
1 11
|
hmeof1o |
|- ( f e. ( J Homeo ~P A ) -> f : X -1-1-onto-> A ) |
13 |
|
f1of |
|- ( f : X -1-1-onto-> A -> f : X --> A ) |
14 |
|
frn |
|- ( f : X --> A -> ran f C_ A ) |
15 |
12 13 14
|
3syl |
|- ( f e. ( J Homeo ~P A ) -> ran f C_ A ) |
16 |
15
|
adantr |
|- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> ran f C_ A ) |
17 |
9 16
|
sstrid |
|- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> ( f " x ) C_ A ) |
18 |
|
vex |
|- f e. _V |
19 |
18
|
imaex |
|- ( f " x ) e. _V |
20 |
19
|
elpw |
|- ( ( f " x ) e. ~P A <-> ( f " x ) C_ A ) |
21 |
17 20
|
sylibr |
|- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> ( f " x ) e. ~P A ) |
22 |
1
|
hmeoopn |
|- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> ( x e. J <-> ( f " x ) e. ~P A ) ) |
23 |
21 22
|
mpbird |
|- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> x e. J ) |
24 |
23
|
ex |
|- ( f e. ( J Homeo ~P A ) -> ( x C_ X -> x e. J ) ) |
25 |
8 24
|
syl5 |
|- ( f e. ( J Homeo ~P A ) -> ( x e. ~P X -> x e. J ) ) |
26 |
25
|
ssrdv |
|- ( f e. ( J Homeo ~P A ) -> ~P X C_ J ) |
27 |
26
|
exlimiv |
|- ( E. f f e. ( J Homeo ~P A ) -> ~P X C_ J ) |
28 |
7 27
|
sylbi |
|- ( ( J Homeo ~P A ) =/= (/) -> ~P X C_ J ) |
29 |
6 28
|
sylbi |
|- ( J ~= ~P A -> ~P X C_ J ) |
30 |
5 29
|
eqssd |
|- ( J ~= ~P A -> J = ~P X ) |