Step |
Hyp |
Ref |
Expression |
1 |
|
hmph |
|- ( J ~= K <-> ( J Homeo K ) =/= (/) ) |
2 |
|
n0 |
|- ( ( J Homeo K ) =/= (/) <-> E. f f e. ( J Homeo K ) ) |
3 |
|
hmeocn |
|- ( f e. ( J Homeo K ) -> f e. ( J Cn K ) ) |
4 |
|
cntop1 |
|- ( f e. ( J Cn K ) -> J e. Top ) |
5 |
3 4
|
syl |
|- ( f e. ( J Homeo K ) -> J e. Top ) |
6 |
|
cntop2 |
|- ( f e. ( J Cn K ) -> K e. Top ) |
7 |
3 6
|
syl |
|- ( f e. ( J Homeo K ) -> K e. Top ) |
8 |
|
eqid |
|- ( x e. J |-> ( f " x ) ) = ( x e. J |-> ( f " x ) ) |
9 |
8
|
hmeoimaf1o |
|- ( f e. ( J Homeo K ) -> ( x e. J |-> ( f " x ) ) : J -1-1-onto-> K ) |
10 |
|
f1oen2g |
|- ( ( J e. Top /\ K e. Top /\ ( x e. J |-> ( f " x ) ) : J -1-1-onto-> K ) -> J ~~ K ) |
11 |
5 7 9 10
|
syl3anc |
|- ( f e. ( J Homeo K ) -> J ~~ K ) |
12 |
11
|
exlimiv |
|- ( E. f f e. ( J Homeo K ) -> J ~~ K ) |
13 |
2 12
|
sylbi |
|- ( ( J Homeo K ) =/= (/) -> J ~~ K ) |
14 |
1 13
|
sylbi |
|- ( J ~= K -> J ~~ K ) |