Step |
Hyp |
Ref |
Expression |
1 |
|
df-hmph |
|- ~= = ( `' Homeo " ( _V \ 1o ) ) |
2 |
|
cnvimass |
|- ( `' Homeo " ( _V \ 1o ) ) C_ dom Homeo |
3 |
|
hmeofn |
|- Homeo Fn ( Top X. Top ) |
4 |
3
|
fndmi |
|- dom Homeo = ( Top X. Top ) |
5 |
2 4
|
sseqtri |
|- ( `' Homeo " ( _V \ 1o ) ) C_ ( Top X. Top ) |
6 |
1 5
|
eqsstri |
|- ~= C_ ( Top X. Top ) |
7 |
|
relxp |
|- Rel ( Top X. Top ) |
8 |
|
relss |
|- ( ~= C_ ( Top X. Top ) -> ( Rel ( Top X. Top ) -> Rel ~= ) ) |
9 |
6 7 8
|
mp2 |
|- Rel ~= |
10 |
|
hmphsym |
|- ( x ~= y -> y ~= x ) |
11 |
|
hmphtr |
|- ( ( x ~= y /\ y ~= z ) -> x ~= z ) |
12 |
|
hmphref |
|- ( x e. Top -> x ~= x ) |
13 |
|
hmphtop1 |
|- ( x ~= x -> x e. Top ) |
14 |
12 13
|
impbii |
|- ( x e. Top <-> x ~= x ) |
15 |
9 10 11 14
|
iseri |
|- ~= Er Top |