Metamath Proof Explorer


Theorem hmphtop

Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion hmphtop
|- ( J ~= K -> ( J e. Top /\ K e. Top ) )

Proof

Step Hyp Ref Expression
1 df-hmph
 |-  ~= = ( `' Homeo " ( _V \ 1o ) )
2 cnvimass
 |-  ( `' Homeo " ( _V \ 1o ) ) C_ dom Homeo
3 hmeofn
 |-  Homeo Fn ( Top X. Top )
4 fndm
 |-  ( Homeo Fn ( Top X. Top ) -> dom Homeo = ( Top X. Top ) )
5 3 4 ax-mp
 |-  dom Homeo = ( Top X. Top )
6 2 5 sseqtri
 |-  ( `' Homeo " ( _V \ 1o ) ) C_ ( Top X. Top )
7 1 6 eqsstri
 |-  ~= C_ ( Top X. Top )
8 7 brel
 |-  ( J ~= K -> ( J e. Top /\ K e. Top ) )