Step |
Hyp |
Ref |
Expression |
1 |
|
hmph |
|- ( J ~= K <-> ( J Homeo K ) =/= (/) ) |
2 |
|
hmph |
|- ( K ~= L <-> ( K Homeo L ) =/= (/) ) |
3 |
|
n0 |
|- ( ( J Homeo K ) =/= (/) <-> E. f f e. ( J Homeo K ) ) |
4 |
|
n0 |
|- ( ( K Homeo L ) =/= (/) <-> E. g g e. ( K Homeo L ) ) |
5 |
|
exdistrv |
|- ( E. f E. g ( f e. ( J Homeo K ) /\ g e. ( K Homeo L ) ) <-> ( E. f f e. ( J Homeo K ) /\ E. g g e. ( K Homeo L ) ) ) |
6 |
|
hmeoco |
|- ( ( f e. ( J Homeo K ) /\ g e. ( K Homeo L ) ) -> ( g o. f ) e. ( J Homeo L ) ) |
7 |
|
hmphi |
|- ( ( g o. f ) e. ( J Homeo L ) -> J ~= L ) |
8 |
6 7
|
syl |
|- ( ( f e. ( J Homeo K ) /\ g e. ( K Homeo L ) ) -> J ~= L ) |
9 |
8
|
exlimivv |
|- ( E. f E. g ( f e. ( J Homeo K ) /\ g e. ( K Homeo L ) ) -> J ~= L ) |
10 |
5 9
|
sylbir |
|- ( ( E. f f e. ( J Homeo K ) /\ E. g g e. ( K Homeo L ) ) -> J ~= L ) |
11 |
3 4 10
|
syl2anb |
|- ( ( ( J Homeo K ) =/= (/) /\ ( K Homeo L ) =/= (/) ) -> J ~= L ) |
12 |
1 2 11
|
syl2anb |
|- ( ( J ~= K /\ K ~= L ) -> J ~= L ) |