| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ho0.1 |
|- T : ~H --> ~H |
| 2 |
|
ffn |
|- ( T : ~H --> ~H -> T Fn ~H ) |
| 3 |
1 2
|
ax-mp |
|- T Fn ~H |
| 4 |
|
ax-hv0cl |
|- 0h e. ~H |
| 5 |
4
|
elexi |
|- 0h e. _V |
| 6 |
5
|
fconst |
|- ( ~H X. { 0h } ) : ~H --> { 0h } |
| 7 |
|
ffn |
|- ( ( ~H X. { 0h } ) : ~H --> { 0h } -> ( ~H X. { 0h } ) Fn ~H ) |
| 8 |
6 7
|
ax-mp |
|- ( ~H X. { 0h } ) Fn ~H |
| 9 |
|
eqfnfv |
|- ( ( T Fn ~H /\ ( ~H X. { 0h } ) Fn ~H ) -> ( T = ( ~H X. { 0h } ) <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) ) |
| 10 |
3 8 9
|
mp2an |
|- ( T = ( ~H X. { 0h } ) <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) |
| 11 |
|
df0op2 |
|- 0hop = ( ~H X. 0H ) |
| 12 |
|
df-ch0 |
|- 0H = { 0h } |
| 13 |
12
|
xpeq2i |
|- ( ~H X. 0H ) = ( ~H X. { 0h } ) |
| 14 |
11 13
|
eqtri |
|- 0hop = ( ~H X. { 0h } ) |
| 15 |
14
|
eqeq2i |
|- ( T = 0hop <-> T = ( ~H X. { 0h } ) ) |
| 16 |
1
|
ffvelcdmi |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 17 |
|
hial0 |
|- ( ( T ` x ) e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = 0h ) ) |
| 18 |
16 17
|
syl |
|- ( x e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = 0h ) ) |
| 19 |
5
|
fvconst2 |
|- ( x e. ~H -> ( ( ~H X. { 0h } ) ` x ) = 0h ) |
| 20 |
19
|
eqeq2d |
|- ( x e. ~H -> ( ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) <-> ( T ` x ) = 0h ) ) |
| 21 |
18 20
|
bitr4d |
|- ( x e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) ) |
| 22 |
21
|
ralbiia |
|- ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) |
| 23 |
10 15 22
|
3bitr4ri |
|- ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> T = 0hop ) |