Step |
Hyp |
Ref |
Expression |
1 |
|
ho0.1 |
|- T : ~H --> ~H |
2 |
|
ffn |
|- ( T : ~H --> ~H -> T Fn ~H ) |
3 |
1 2
|
ax-mp |
|- T Fn ~H |
4 |
|
ax-hv0cl |
|- 0h e. ~H |
5 |
4
|
elexi |
|- 0h e. _V |
6 |
5
|
fconst |
|- ( ~H X. { 0h } ) : ~H --> { 0h } |
7 |
|
ffn |
|- ( ( ~H X. { 0h } ) : ~H --> { 0h } -> ( ~H X. { 0h } ) Fn ~H ) |
8 |
6 7
|
ax-mp |
|- ( ~H X. { 0h } ) Fn ~H |
9 |
|
eqfnfv |
|- ( ( T Fn ~H /\ ( ~H X. { 0h } ) Fn ~H ) -> ( T = ( ~H X. { 0h } ) <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) ) |
10 |
3 8 9
|
mp2an |
|- ( T = ( ~H X. { 0h } ) <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) |
11 |
|
df0op2 |
|- 0hop = ( ~H X. 0H ) |
12 |
|
df-ch0 |
|- 0H = { 0h } |
13 |
12
|
xpeq2i |
|- ( ~H X. 0H ) = ( ~H X. { 0h } ) |
14 |
11 13
|
eqtri |
|- 0hop = ( ~H X. { 0h } ) |
15 |
14
|
eqeq2i |
|- ( T = 0hop <-> T = ( ~H X. { 0h } ) ) |
16 |
1
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
17 |
|
hial0 |
|- ( ( T ` x ) e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = 0h ) ) |
18 |
16 17
|
syl |
|- ( x e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = 0h ) ) |
19 |
5
|
fvconst2 |
|- ( x e. ~H -> ( ( ~H X. { 0h } ) ` x ) = 0h ) |
20 |
19
|
eqeq2d |
|- ( x e. ~H -> ( ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) <-> ( T ` x ) = 0h ) ) |
21 |
18 20
|
bitr4d |
|- ( x e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) ) |
22 |
21
|
ralbiia |
|- ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) |
23 |
10 15 22
|
3bitr4ri |
|- ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> T = 0hop ) |