Metamath Proof Explorer


Theorem ho0coi

Description: Composition of the zero operator and a Hilbert space operator. (Contributed by NM, 9-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1
|- T : ~H --> ~H
Assertion ho0coi
|- ( 0hop o. T ) = 0hop

Proof

Step Hyp Ref Expression
1 hoaddid1.1
 |-  T : ~H --> ~H
2 1 ffvelrni
 |-  ( x e. ~H -> ( T ` x ) e. ~H )
3 ho0val
 |-  ( ( T ` x ) e. ~H -> ( 0hop ` ( T ` x ) ) = 0h )
4 2 3 syl
 |-  ( x e. ~H -> ( 0hop ` ( T ` x ) ) = 0h )
5 ho0f
 |-  0hop : ~H --> ~H
6 5 1 hocoi
 |-  ( x e. ~H -> ( ( 0hop o. T ) ` x ) = ( 0hop ` ( T ` x ) ) )
7 ho0val
 |-  ( x e. ~H -> ( 0hop ` x ) = 0h )
8 4 6 7 3eqtr4d
 |-  ( x e. ~H -> ( ( 0hop o. T ) ` x ) = ( 0hop ` x ) )
9 8 rgen
 |-  A. x e. ~H ( ( 0hop o. T ) ` x ) = ( 0hop ` x )
10 5 1 hocofi
 |-  ( 0hop o. T ) : ~H --> ~H
11 10 5 hoeqi
 |-  ( A. x e. ~H ( ( 0hop o. T ) ` x ) = ( 0hop ` x ) <-> ( 0hop o. T ) = 0hop )
12 9 11 mpbi
 |-  ( 0hop o. T ) = 0hop