| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoaddrid.1 |  |-  T : ~H --> ~H | 
						
							| 2 | 1 | ffvelcdmi |  |-  ( x e. ~H -> ( T ` x ) e. ~H ) | 
						
							| 3 |  | ho0val |  |-  ( ( T ` x ) e. ~H -> ( 0hop ` ( T ` x ) ) = 0h ) | 
						
							| 4 | 2 3 | syl |  |-  ( x e. ~H -> ( 0hop ` ( T ` x ) ) = 0h ) | 
						
							| 5 |  | ho0f |  |-  0hop : ~H --> ~H | 
						
							| 6 | 5 1 | hocoi |  |-  ( x e. ~H -> ( ( 0hop o. T ) ` x ) = ( 0hop ` ( T ` x ) ) ) | 
						
							| 7 |  | ho0val |  |-  ( x e. ~H -> ( 0hop ` x ) = 0h ) | 
						
							| 8 | 4 6 7 | 3eqtr4d |  |-  ( x e. ~H -> ( ( 0hop o. T ) ` x ) = ( 0hop ` x ) ) | 
						
							| 9 | 8 | rgen |  |-  A. x e. ~H ( ( 0hop o. T ) ` x ) = ( 0hop ` x ) | 
						
							| 10 | 5 1 | hocofi |  |-  ( 0hop o. T ) : ~H --> ~H | 
						
							| 11 | 10 5 | hoeqi |  |-  ( A. x e. ~H ( ( 0hop o. T ) ` x ) = ( 0hop ` x ) <-> ( 0hop o. T ) = 0hop ) | 
						
							| 12 | 9 11 | mpbi |  |-  ( 0hop o. T ) = 0hop |