Metamath Proof Explorer


Theorem ho0subi

Description: Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hodseq.2
|- S : ~H --> ~H
hodseq.3
|- T : ~H --> ~H
Assertion ho0subi
|- ( S -op T ) = ( S +op ( 0hop -op T ) )

Proof

Step Hyp Ref Expression
1 hodseq.2
 |-  S : ~H --> ~H
2 hodseq.3
 |-  T : ~H --> ~H
3 ho0f
 |-  0hop : ~H --> ~H
4 3 2 hosubcli
 |-  ( 0hop -op T ) : ~H --> ~H
5 2 1 4 hoadd12i
 |-  ( T +op ( S +op ( 0hop -op T ) ) ) = ( S +op ( T +op ( 0hop -op T ) ) )
6 2 3 hodseqi
 |-  ( T +op ( 0hop -op T ) ) = 0hop
7 6 oveq2i
 |-  ( S +op ( T +op ( 0hop -op T ) ) ) = ( S +op 0hop )
8 1 hoaddid1i
 |-  ( S +op 0hop ) = S
9 5 7 8 3eqtri
 |-  ( T +op ( S +op ( 0hop -op T ) ) ) = S
10 1 4 hoaddcli
 |-  ( S +op ( 0hop -op T ) ) : ~H --> ~H
11 1 2 10 hodsi
 |-  ( ( S -op T ) = ( S +op ( 0hop -op T ) ) <-> ( T +op ( S +op ( 0hop -op T ) ) ) = S )
12 9 11 mpbir
 |-  ( S -op T ) = ( S +op ( 0hop -op T ) )