Step |
Hyp |
Ref |
Expression |
1 |
|
hodseq.2 |
|- S : ~H --> ~H |
2 |
|
hodseq.3 |
|- T : ~H --> ~H |
3 |
|
ho0f |
|- 0hop : ~H --> ~H |
4 |
3 2
|
hosubcli |
|- ( 0hop -op T ) : ~H --> ~H |
5 |
2 1 4
|
hoadd12i |
|- ( T +op ( S +op ( 0hop -op T ) ) ) = ( S +op ( T +op ( 0hop -op T ) ) ) |
6 |
2 3
|
hodseqi |
|- ( T +op ( 0hop -op T ) ) = 0hop |
7 |
6
|
oveq2i |
|- ( S +op ( T +op ( 0hop -op T ) ) ) = ( S +op 0hop ) |
8 |
1
|
hoaddid1i |
|- ( S +op 0hop ) = S |
9 |
5 7 8
|
3eqtri |
|- ( T +op ( S +op ( 0hop -op T ) ) ) = S |
10 |
1 4
|
hoaddcli |
|- ( S +op ( 0hop -op T ) ) : ~H --> ~H |
11 |
1 2 10
|
hodsi |
|- ( ( S -op T ) = ( S +op ( 0hop -op T ) ) <-> ( T +op ( S +op ( 0hop -op T ) ) ) = S ) |
12 |
9 11
|
mpbir |
|- ( S -op T ) = ( S +op ( 0hop -op T ) ) |