Step |
Hyp |
Ref |
Expression |
1 |
|
hods.1 |
|- R : ~H --> ~H |
2 |
|
hods.2 |
|- S : ~H --> ~H |
3 |
|
hods.3 |
|- T : ~H --> ~H |
4 |
1 2
|
hocofi |
|- ( R o. S ) : ~H --> ~H |
5 |
4 3
|
hocoi |
|- ( A e. ~H -> ( ( ( R o. S ) o. T ) ` A ) = ( ( R o. S ) ` ( T ` A ) ) ) |
6 |
3
|
ffvelrni |
|- ( A e. ~H -> ( T ` A ) e. ~H ) |
7 |
1 2
|
hocoi |
|- ( ( T ` A ) e. ~H -> ( ( R o. S ) ` ( T ` A ) ) = ( R ` ( S ` ( T ` A ) ) ) ) |
8 |
6 7
|
syl |
|- ( A e. ~H -> ( ( R o. S ) ` ( T ` A ) ) = ( R ` ( S ` ( T ` A ) ) ) ) |
9 |
5 8
|
eqtrd |
|- ( A e. ~H -> ( ( ( R o. S ) o. T ) ` A ) = ( R ` ( S ` ( T ` A ) ) ) ) |