Metamath Proof Explorer


Theorem ho2times

Description: Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion ho2times
|- ( T : ~H --> ~H -> ( 2 .op T ) = ( T +op T ) )

Proof

Step Hyp Ref Expression
1 df-2
 |-  2 = ( 1 + 1 )
2 1 oveq1i
 |-  ( 2 .op T ) = ( ( 1 + 1 ) .op T )
3 ax-1cn
 |-  1 e. CC
4 hoadddir
 |-  ( ( 1 e. CC /\ 1 e. CC /\ T : ~H --> ~H ) -> ( ( 1 + 1 ) .op T ) = ( ( 1 .op T ) +op ( 1 .op T ) ) )
5 3 3 4 mp3an12
 |-  ( T : ~H --> ~H -> ( ( 1 + 1 ) .op T ) = ( ( 1 .op T ) +op ( 1 .op T ) ) )
6 2 5 syl5eq
 |-  ( T : ~H --> ~H -> ( 2 .op T ) = ( ( 1 .op T ) +op ( 1 .op T ) ) )
7 hoadddi
 |-  ( ( 1 e. CC /\ T : ~H --> ~H /\ T : ~H --> ~H ) -> ( 1 .op ( T +op T ) ) = ( ( 1 .op T ) +op ( 1 .op T ) ) )
8 3 7 mp3an1
 |-  ( ( T : ~H --> ~H /\ T : ~H --> ~H ) -> ( 1 .op ( T +op T ) ) = ( ( 1 .op T ) +op ( 1 .op T ) ) )
9 8 anidms
 |-  ( T : ~H --> ~H -> ( 1 .op ( T +op T ) ) = ( ( 1 .op T ) +op ( 1 .op T ) ) )
10 hoaddcl
 |-  ( ( T : ~H --> ~H /\ T : ~H --> ~H ) -> ( T +op T ) : ~H --> ~H )
11 10 anidms
 |-  ( T : ~H --> ~H -> ( T +op T ) : ~H --> ~H )
12 homulid2
 |-  ( ( T +op T ) : ~H --> ~H -> ( 1 .op ( T +op T ) ) = ( T +op T ) )
13 11 12 syl
 |-  ( T : ~H --> ~H -> ( 1 .op ( T +op T ) ) = ( T +op T ) )
14 6 9 13 3eqtr2d
 |-  ( T : ~H --> ~H -> ( 2 .op T ) = ( T +op T ) )