| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoaddcom |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) |
| 2 |
1
|
3adant1 |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) |
| 3 |
2
|
oveq2d |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( R +op ( S +op T ) ) = ( R +op ( T +op S ) ) ) |
| 4 |
|
hoaddass |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |
| 5 |
|
hoaddass |
|- ( ( R : ~H --> ~H /\ T : ~H --> ~H /\ S : ~H --> ~H ) -> ( ( R +op T ) +op S ) = ( R +op ( T +op S ) ) ) |
| 6 |
5
|
3com23 |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op T ) +op S ) = ( R +op ( T +op S ) ) ) |
| 7 |
3 4 6
|
3eqtr4d |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( ( R +op T ) +op S ) ) |