Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( R +op S ) = ( if ( R : ~H --> ~H , R , 0hop ) +op S ) ) |
2 |
1
|
oveq1d |
|- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( R +op S ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) ) |
3 |
|
oveq1 |
|- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( R +op ( S +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) ) |
4 |
2 3
|
eqeq12d |
|- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) ) ) |
5 |
|
oveq2 |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op S ) = ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) |
6 |
5
|
oveq1d |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) ) |
7 |
|
oveq1 |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) |
8 |
7
|
oveq2d |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) ) |
9 |
6 8
|
eqeq12d |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) ) ) |
10 |
|
oveq2 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
11 |
|
oveq2 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
12 |
11
|
oveq2d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) ) |
13 |
10 12
|
eqeq12d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) ) ) |
14 |
|
ho0f |
|- 0hop : ~H --> ~H |
15 |
14
|
elimf |
|- if ( R : ~H --> ~H , R , 0hop ) : ~H --> ~H |
16 |
14
|
elimf |
|- if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H |
17 |
14
|
elimf |
|- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
18 |
15 16 17
|
hoaddassi |
|- ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
19 |
4 9 13 18
|
dedth3h |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |