| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( R +op S ) = ( if ( R : ~H --> ~H , R , 0hop ) +op S ) ) |
| 2 |
1
|
oveq1d |
|- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( R +op S ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) ) |
| 3 |
|
oveq1 |
|- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( R +op ( S +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) ) |
| 4 |
2 3
|
eqeq12d |
|- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) ) ) |
| 5 |
|
oveq2 |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op S ) = ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) |
| 6 |
5
|
oveq1d |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) ) |
| 7 |
|
oveq1 |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) |
| 8 |
7
|
oveq2d |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) ) |
| 9 |
6 8
|
eqeq12d |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) ) ) |
| 10 |
|
oveq2 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
| 11 |
|
oveq2 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
| 12 |
11
|
oveq2d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) ) |
| 13 |
10 12
|
eqeq12d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) ) ) |
| 14 |
|
ho0f |
|- 0hop : ~H --> ~H |
| 15 |
14
|
elimf |
|- if ( R : ~H --> ~H , R , 0hop ) : ~H --> ~H |
| 16 |
14
|
elimf |
|- if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H |
| 17 |
14
|
elimf |
|- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
| 18 |
15 16 17
|
hoaddassi |
|- ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
| 19 |
4 9 13 18
|
dedth3h |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |