| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hods.1 |
|- R : ~H --> ~H |
| 2 |
|
hods.2 |
|- S : ~H --> ~H |
| 3 |
|
hods.3 |
|- T : ~H --> ~H |
| 4 |
|
hosval |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( R +op S ) ` x ) = ( ( R ` x ) +h ( S ` x ) ) ) |
| 5 |
1 2 4
|
mp3an12 |
|- ( x e. ~H -> ( ( R +op S ) ` x ) = ( ( R ` x ) +h ( S ` x ) ) ) |
| 6 |
5
|
oveq1d |
|- ( x e. ~H -> ( ( ( R +op S ) ` x ) +h ( T ` x ) ) = ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) ) |
| 7 |
1 2
|
hoaddcli |
|- ( R +op S ) : ~H --> ~H |
| 8 |
|
hosval |
|- ( ( ( R +op S ) : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( ( R +op S ) +op T ) ` x ) = ( ( ( R +op S ) ` x ) +h ( T ` x ) ) ) |
| 9 |
7 3 8
|
mp3an12 |
|- ( x e. ~H -> ( ( ( R +op S ) +op T ) ` x ) = ( ( ( R +op S ) ` x ) +h ( T ` x ) ) ) |
| 10 |
|
hosval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
| 11 |
2 3 10
|
mp3an12 |
|- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
| 12 |
11
|
oveq2d |
|- ( x e. ~H -> ( ( R ` x ) +h ( ( S +op T ) ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
| 13 |
2 3
|
hoaddcli |
|- ( S +op T ) : ~H --> ~H |
| 14 |
|
hosval |
|- ( ( R : ~H --> ~H /\ ( S +op T ) : ~H --> ~H /\ x e. ~H ) -> ( ( R +op ( S +op T ) ) ` x ) = ( ( R ` x ) +h ( ( S +op T ) ` x ) ) ) |
| 15 |
1 13 14
|
mp3an12 |
|- ( x e. ~H -> ( ( R +op ( S +op T ) ) ` x ) = ( ( R ` x ) +h ( ( S +op T ) ` x ) ) ) |
| 16 |
1
|
ffvelcdmi |
|- ( x e. ~H -> ( R ` x ) e. ~H ) |
| 17 |
2
|
ffvelcdmi |
|- ( x e. ~H -> ( S ` x ) e. ~H ) |
| 18 |
3
|
ffvelcdmi |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 19 |
|
ax-hvass |
|- ( ( ( R ` x ) e. ~H /\ ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
| 20 |
16 17 18 19
|
syl3anc |
|- ( x e. ~H -> ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
| 21 |
12 15 20
|
3eqtr4d |
|- ( x e. ~H -> ( ( R +op ( S +op T ) ) ` x ) = ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) ) |
| 22 |
6 9 21
|
3eqtr4d |
|- ( x e. ~H -> ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) ) |
| 23 |
22
|
rgen |
|- A. x e. ~H ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) |
| 24 |
7 3
|
hoaddcli |
|- ( ( R +op S ) +op T ) : ~H --> ~H |
| 25 |
1 13
|
hoaddcli |
|- ( R +op ( S +op T ) ) : ~H --> ~H |
| 26 |
24 25
|
hoeqi |
|- ( A. x e. ~H ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) <-> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |
| 27 |
23 26
|
mpbi |
|- ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) |