Step |
Hyp |
Ref |
Expression |
1 |
|
hods.1 |
|- R : ~H --> ~H |
2 |
|
hods.2 |
|- S : ~H --> ~H |
3 |
|
hods.3 |
|- T : ~H --> ~H |
4 |
|
hosval |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( R +op S ) ` x ) = ( ( R ` x ) +h ( S ` x ) ) ) |
5 |
1 2 4
|
mp3an12 |
|- ( x e. ~H -> ( ( R +op S ) ` x ) = ( ( R ` x ) +h ( S ` x ) ) ) |
6 |
5
|
oveq1d |
|- ( x e. ~H -> ( ( ( R +op S ) ` x ) +h ( T ` x ) ) = ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) ) |
7 |
1 2
|
hoaddcli |
|- ( R +op S ) : ~H --> ~H |
8 |
|
hosval |
|- ( ( ( R +op S ) : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( ( R +op S ) +op T ) ` x ) = ( ( ( R +op S ) ` x ) +h ( T ` x ) ) ) |
9 |
7 3 8
|
mp3an12 |
|- ( x e. ~H -> ( ( ( R +op S ) +op T ) ` x ) = ( ( ( R +op S ) ` x ) +h ( T ` x ) ) ) |
10 |
|
hosval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
11 |
2 3 10
|
mp3an12 |
|- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
12 |
11
|
oveq2d |
|- ( x e. ~H -> ( ( R ` x ) +h ( ( S +op T ) ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
13 |
2 3
|
hoaddcli |
|- ( S +op T ) : ~H --> ~H |
14 |
|
hosval |
|- ( ( R : ~H --> ~H /\ ( S +op T ) : ~H --> ~H /\ x e. ~H ) -> ( ( R +op ( S +op T ) ) ` x ) = ( ( R ` x ) +h ( ( S +op T ) ` x ) ) ) |
15 |
1 13 14
|
mp3an12 |
|- ( x e. ~H -> ( ( R +op ( S +op T ) ) ` x ) = ( ( R ` x ) +h ( ( S +op T ) ` x ) ) ) |
16 |
1
|
ffvelrni |
|- ( x e. ~H -> ( R ` x ) e. ~H ) |
17 |
2
|
ffvelrni |
|- ( x e. ~H -> ( S ` x ) e. ~H ) |
18 |
3
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
19 |
|
ax-hvass |
|- ( ( ( R ` x ) e. ~H /\ ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
20 |
16 17 18 19
|
syl3anc |
|- ( x e. ~H -> ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
21 |
12 15 20
|
3eqtr4d |
|- ( x e. ~H -> ( ( R +op ( S +op T ) ) ` x ) = ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) ) |
22 |
6 9 21
|
3eqtr4d |
|- ( x e. ~H -> ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) ) |
23 |
22
|
rgen |
|- A. x e. ~H ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) |
24 |
7 3
|
hoaddcli |
|- ( ( R +op S ) +op T ) : ~H --> ~H |
25 |
1 13
|
hoaddcli |
|- ( R +op ( S +op T ) ) : ~H --> ~H |
26 |
24 25
|
hoeqi |
|- ( A. x e. ~H ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) <-> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |
27 |
23 26
|
mpbi |
|- ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) |