Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
|- ( ( S : ~H --> ~H /\ x e. ~H ) -> ( S ` x ) e. ~H ) |
2 |
1
|
adantlr |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( S ` x ) e. ~H ) |
3 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
4 |
3
|
adantll |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
5 |
|
hvaddcl |
|- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) e. ~H ) |
6 |
2 4 5
|
syl2anc |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) e. ~H ) |
7 |
6
|
fmpttd |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) : ~H --> ~H ) |
8 |
|
hosmval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) |
9 |
8
|
feq1d |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op T ) : ~H --> ~H <-> ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) : ~H --> ~H ) ) |
10 |
7 9
|
mpbird |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) : ~H --> ~H ) |