| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffvelcdm |  |-  ( ( S : ~H --> ~H /\ x e. ~H ) -> ( S ` x ) e. ~H ) | 
						
							| 2 | 1 | adantlr |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( S ` x ) e. ~H ) | 
						
							| 3 |  | ffvelcdm |  |-  ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) | 
						
							| 4 | 3 | adantll |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( T ` x ) e. ~H ) | 
						
							| 5 |  | hvaddcl |  |-  ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) e. ~H ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) e. ~H ) | 
						
							| 7 | 6 | fmpttd |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) : ~H --> ~H ) | 
						
							| 8 |  | hosmval |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) | 
						
							| 9 | 8 | feq1d |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op T ) : ~H --> ~H <-> ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) : ~H --> ~H ) ) | 
						
							| 10 | 7 9 | mpbird |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) : ~H --> ~H ) |