| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) |
| 2 |
|
oveq2 |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( T +op S ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) ) |
| 3 |
1 2
|
eqeq12d |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( S +op T ) = ( T +op S ) <-> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) ) ) |
| 4 |
|
oveq2 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
| 5 |
|
oveq1 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( T +op if ( S : ~H --> ~H , S , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) <-> ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) ) |
| 7 |
|
ho0f |
|- 0hop : ~H --> ~H |
| 8 |
7
|
elimf |
|- if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H |
| 9 |
7
|
elimf |
|- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
| 10 |
8 9
|
hoaddcomi |
|- ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) |
| 11 |
3 6 10
|
dedth2h |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) |