| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) | 
						
							| 2 |  | oveq2 |  |-  ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( T +op S ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) ) | 
						
							| 3 | 1 2 | eqeq12d |  |-  ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( S +op T ) = ( T +op S ) <-> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( T +op if ( S : ~H --> ~H , S , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) | 
						
							| 6 | 4 5 | eqeq12d |  |-  ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) <-> ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) ) | 
						
							| 7 |  | ho0f |  |-  0hop : ~H --> ~H | 
						
							| 8 | 7 | elimf |  |-  if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H | 
						
							| 9 | 7 | elimf |  |-  if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H | 
						
							| 10 | 8 9 | hoaddcomi |  |-  ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) | 
						
							| 11 | 3 6 10 | dedth2h |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) |