| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoeq.1 |  |-  S : ~H --> ~H | 
						
							| 2 |  | hoeq.2 |  |-  T : ~H --> ~H | 
						
							| 3 | 1 | ffvelcdmi |  |-  ( x e. ~H -> ( S ` x ) e. ~H ) | 
						
							| 4 | 2 | ffvelcdmi |  |-  ( x e. ~H -> ( T ` x ) e. ~H ) | 
						
							| 5 |  | ax-hvcom |  |-  ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) = ( ( T ` x ) +h ( S ` x ) ) ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( x e. ~H -> ( ( S ` x ) +h ( T ` x ) ) = ( ( T ` x ) +h ( S ` x ) ) ) | 
						
							| 7 |  | hosval |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) | 
						
							| 8 | 1 2 7 | mp3an12 |  |-  ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) | 
						
							| 9 |  | hosval |  |-  ( ( T : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( T +op S ) ` x ) = ( ( T ` x ) +h ( S ` x ) ) ) | 
						
							| 10 | 2 1 9 | mp3an12 |  |-  ( x e. ~H -> ( ( T +op S ) ` x ) = ( ( T ` x ) +h ( S ` x ) ) ) | 
						
							| 11 | 6 8 10 | 3eqtr4d |  |-  ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) ) | 
						
							| 12 | 11 | rgen |  |-  A. x e. ~H ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) | 
						
							| 13 | 1 2 | hoaddcli |  |-  ( S +op T ) : ~H --> ~H | 
						
							| 14 | 2 1 | hoaddcli |  |-  ( T +op S ) : ~H --> ~H | 
						
							| 15 | 13 14 | hoeqi |  |-  ( A. x e. ~H ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) <-> ( S +op T ) = ( T +op S ) ) | 
						
							| 16 | 12 15 | mpbi |  |-  ( S +op T ) = ( T +op S ) |