Step |
Hyp |
Ref |
Expression |
1 |
|
hoeq.1 |
|- S : ~H --> ~H |
2 |
|
hoeq.2 |
|- T : ~H --> ~H |
3 |
1
|
ffvelrni |
|- ( x e. ~H -> ( S ` x ) e. ~H ) |
4 |
2
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
5 |
|
ax-hvcom |
|- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) = ( ( T ` x ) +h ( S ` x ) ) ) |
6 |
3 4 5
|
syl2anc |
|- ( x e. ~H -> ( ( S ` x ) +h ( T ` x ) ) = ( ( T ` x ) +h ( S ` x ) ) ) |
7 |
|
hosval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
8 |
1 2 7
|
mp3an12 |
|- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
9 |
|
hosval |
|- ( ( T : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( T +op S ) ` x ) = ( ( T ` x ) +h ( S ` x ) ) ) |
10 |
2 1 9
|
mp3an12 |
|- ( x e. ~H -> ( ( T +op S ) ` x ) = ( ( T ` x ) +h ( S ` x ) ) ) |
11 |
6 8 10
|
3eqtr4d |
|- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) ) |
12 |
11
|
rgen |
|- A. x e. ~H ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) |
13 |
1 2
|
hoaddcli |
|- ( S +op T ) : ~H --> ~H |
14 |
2 1
|
hoaddcli |
|- ( T +op S ) : ~H --> ~H |
15 |
13 14
|
hoeqi |
|- ( A. x e. ~H ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) <-> ( S +op T ) = ( T +op S ) ) |
16 |
12 15
|
mpbi |
|- ( S +op T ) = ( T +op S ) |