Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> A e. CC ) |
2 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
3 |
2
|
3ad2antl2 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
4 |
|
ffvelrn |
|- ( ( U : ~H --> ~H /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
5 |
4
|
3ad2antl3 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
6 |
|
ax-hvdistr1 |
|- ( ( A e. CC /\ ( T ` x ) e. ~H /\ ( U ` x ) e. ~H ) -> ( A .h ( ( T ` x ) +h ( U ` x ) ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
7 |
1 3 5 6
|
syl3anc |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T ` x ) +h ( U ` x ) ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
8 |
|
hosval |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( T +op U ) ` x ) = ( ( T ` x ) +h ( U ` x ) ) ) |
9 |
8
|
oveq2d |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
10 |
9
|
3expa |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
11 |
10
|
3adantl1 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
12 |
|
homval |
|- ( ( A e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
13 |
12
|
3expa |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
14 |
13
|
3adantl3 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
15 |
|
homval |
|- ( ( A e. CC /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
16 |
15
|
3expa |
|- ( ( ( A e. CC /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
17 |
16
|
3adantl2 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
18 |
14 17
|
oveq12d |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
19 |
7 11 18
|
3eqtr4d |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
20 |
|
hoaddcl |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op U ) : ~H --> ~H ) |
21 |
20
|
anim2i |
|- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( A e. CC /\ ( T +op U ) : ~H --> ~H ) ) |
22 |
21
|
3impb |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A e. CC /\ ( T +op U ) : ~H --> ~H ) ) |
23 |
|
homval |
|- ( ( A e. CC /\ ( T +op U ) : ~H --> ~H /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
24 |
23
|
3expa |
|- ( ( ( A e. CC /\ ( T +op U ) : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
25 |
22 24
|
sylan |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
26 |
|
homulcl |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
27 |
|
homulcl |
|- ( ( A e. CC /\ U : ~H --> ~H ) -> ( A .op U ) : ~H --> ~H ) |
28 |
26 27
|
anim12i |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( A e. CC /\ U : ~H --> ~H ) ) -> ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) ) |
29 |
28
|
3impdi |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) ) |
30 |
|
hosval |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
31 |
30
|
3expa |
|- ( ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
32 |
29 31
|
sylan |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
33 |
19 25 32
|
3eqtr4d |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) ) |
34 |
33
|
ralrimiva |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) ) |
35 |
|
homulcl |
|- ( ( A e. CC /\ ( T +op U ) : ~H --> ~H ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
36 |
20 35
|
sylan2 |
|- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
37 |
36
|
3impb |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
38 |
|
hoaddcl |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
39 |
26 27 38
|
syl2an |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( A e. CC /\ U : ~H --> ~H ) ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
40 |
39
|
3impdi |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
41 |
|
hoeq |
|- ( ( ( A .op ( T +op U ) ) : ~H --> ~H /\ ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) -> ( A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) <-> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) ) |
42 |
37 40 41
|
syl2anc |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) <-> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) ) |
43 |
34 42
|
mpbid |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) |