Metamath Proof Explorer


Theorem hoaddfni

Description: Functionality of sum of Hilbert space operators. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1
|- S : ~H --> ~H
hoeq.2
|- T : ~H --> ~H
Assertion hoaddfni
|- ( S +op T ) Fn ~H

Proof

Step Hyp Ref Expression
1 hoeq.1
 |-  S : ~H --> ~H
2 hoeq.2
 |-  T : ~H --> ~H
3 1 2 hoaddcli
 |-  ( S +op T ) : ~H --> ~H
4 ffn
 |-  ( ( S +op T ) : ~H --> ~H -> ( S +op T ) Fn ~H )
5 3 4 ax-mp
 |-  ( S +op T ) Fn ~H