Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( T +op 0hop ) = ( if ( T : ~H --> ~H , T , 0hop ) +op 0hop ) ) |
2 |
|
id |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> T = if ( T : ~H --> ~H , T , 0hop ) ) |
3 |
1 2
|
eqeq12d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( T +op 0hop ) = T <-> ( if ( T : ~H --> ~H , T , 0hop ) +op 0hop ) = if ( T : ~H --> ~H , T , 0hop ) ) ) |
4 |
|
ho0f |
|- 0hop : ~H --> ~H |
5 |
4
|
elimf |
|- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
6 |
5
|
hoaddid1i |
|- ( if ( T : ~H --> ~H , T , 0hop ) +op 0hop ) = if ( T : ~H --> ~H , T , 0hop ) |
7 |
3 6
|
dedth |
|- ( T : ~H --> ~H -> ( T +op 0hop ) = T ) |