Step |
Hyp |
Ref |
Expression |
1 |
|
hoaddid1.1 |
|- T : ~H --> ~H |
2 |
|
ho0f |
|- 0hop : ~H --> ~H |
3 |
|
hosval |
|- ( ( T : ~H --> ~H /\ 0hop : ~H --> ~H /\ x e. ~H ) -> ( ( T +op 0hop ) ` x ) = ( ( T ` x ) +h ( 0hop ` x ) ) ) |
4 |
1 2 3
|
mp3an12 |
|- ( x e. ~H -> ( ( T +op 0hop ) ` x ) = ( ( T ` x ) +h ( 0hop ` x ) ) ) |
5 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
6 |
5
|
oveq2d |
|- ( x e. ~H -> ( ( T ` x ) +h ( 0hop ` x ) ) = ( ( T ` x ) +h 0h ) ) |
7 |
1
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
8 |
|
ax-hvaddid |
|- ( ( T ` x ) e. ~H -> ( ( T ` x ) +h 0h ) = ( T ` x ) ) |
9 |
7 8
|
syl |
|- ( x e. ~H -> ( ( T ` x ) +h 0h ) = ( T ` x ) ) |
10 |
4 6 9
|
3eqtrd |
|- ( x e. ~H -> ( ( T +op 0hop ) ` x ) = ( T ` x ) ) |
11 |
10
|
rgen |
|- A. x e. ~H ( ( T +op 0hop ) ` x ) = ( T ` x ) |
12 |
1 2
|
hoaddcli |
|- ( T +op 0hop ) : ~H --> ~H |
13 |
12 1
|
hoeqi |
|- ( A. x e. ~H ( ( T +op 0hop ) ` x ) = ( T ` x ) <-> ( T +op 0hop ) = T ) |
14 |
11 13
|
mpbi |
|- ( T +op 0hop ) = T |