Metamath Proof Explorer


Theorem hoaddid1i

Description: Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1
|- T : ~H --> ~H
Assertion hoaddid1i
|- ( T +op 0hop ) = T

Proof

Step Hyp Ref Expression
1 hoaddid1.1
 |-  T : ~H --> ~H
2 ho0f
 |-  0hop : ~H --> ~H
3 hosval
 |-  ( ( T : ~H --> ~H /\ 0hop : ~H --> ~H /\ x e. ~H ) -> ( ( T +op 0hop ) ` x ) = ( ( T ` x ) +h ( 0hop ` x ) ) )
4 1 2 3 mp3an12
 |-  ( x e. ~H -> ( ( T +op 0hop ) ` x ) = ( ( T ` x ) +h ( 0hop ` x ) ) )
5 ho0val
 |-  ( x e. ~H -> ( 0hop ` x ) = 0h )
6 5 oveq2d
 |-  ( x e. ~H -> ( ( T ` x ) +h ( 0hop ` x ) ) = ( ( T ` x ) +h 0h ) )
7 1 ffvelrni
 |-  ( x e. ~H -> ( T ` x ) e. ~H )
8 ax-hvaddid
 |-  ( ( T ` x ) e. ~H -> ( ( T ` x ) +h 0h ) = ( T ` x ) )
9 7 8 syl
 |-  ( x e. ~H -> ( ( T ` x ) +h 0h ) = ( T ` x ) )
10 4 6 9 3eqtrd
 |-  ( x e. ~H -> ( ( T +op 0hop ) ` x ) = ( T ` x ) )
11 10 rgen
 |-  A. x e. ~H ( ( T +op 0hop ) ` x ) = ( T ` x )
12 1 2 hoaddcli
 |-  ( T +op 0hop ) : ~H --> ~H
13 12 1 hoeqi
 |-  ( A. x e. ~H ( ( T +op 0hop ) ` x ) = ( T ` x ) <-> ( T +op 0hop ) = T )
14 11 13 mpbi
 |-  ( T +op 0hop ) = T