| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoaddrid.1 |  |-  T : ~H --> ~H | 
						
							| 2 |  | ho0f |  |-  0hop : ~H --> ~H | 
						
							| 3 |  | hosval |  |-  ( ( T : ~H --> ~H /\ 0hop : ~H --> ~H /\ x e. ~H ) -> ( ( T +op 0hop ) ` x ) = ( ( T ` x ) +h ( 0hop ` x ) ) ) | 
						
							| 4 | 1 2 3 | mp3an12 |  |-  ( x e. ~H -> ( ( T +op 0hop ) ` x ) = ( ( T ` x ) +h ( 0hop ` x ) ) ) | 
						
							| 5 |  | ho0val |  |-  ( x e. ~H -> ( 0hop ` x ) = 0h ) | 
						
							| 6 | 5 | oveq2d |  |-  ( x e. ~H -> ( ( T ` x ) +h ( 0hop ` x ) ) = ( ( T ` x ) +h 0h ) ) | 
						
							| 7 | 1 | ffvelcdmi |  |-  ( x e. ~H -> ( T ` x ) e. ~H ) | 
						
							| 8 |  | ax-hvaddid |  |-  ( ( T ` x ) e. ~H -> ( ( T ` x ) +h 0h ) = ( T ` x ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( x e. ~H -> ( ( T ` x ) +h 0h ) = ( T ` x ) ) | 
						
							| 10 | 4 6 9 | 3eqtrd |  |-  ( x e. ~H -> ( ( T +op 0hop ) ` x ) = ( T ` x ) ) | 
						
							| 11 | 10 | rgen |  |-  A. x e. ~H ( ( T +op 0hop ) ` x ) = ( T ` x ) | 
						
							| 12 | 1 2 | hoaddcli |  |-  ( T +op 0hop ) : ~H --> ~H | 
						
							| 13 | 12 1 | hoeqi |  |-  ( A. x e. ~H ( ( T +op 0hop ) ` x ) = ( T ` x ) <-> ( T +op 0hop ) = T ) | 
						
							| 14 | 11 13 | mpbi |  |-  ( T +op 0hop ) = T |