| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoaddcom |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( ( T +op S ) -op U ) ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( ( T +op S ) -op U ) ) | 
						
							| 4 |  | hoaddsubass |  |-  ( ( T : ~H --> ~H /\ S : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( T +op S ) -op U ) = ( T +op ( S -op U ) ) ) | 
						
							| 5 | 4 | 3com12 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( T +op S ) -op U ) = ( T +op ( S -op U ) ) ) | 
						
							| 6 |  | hosubcl |  |-  ( ( S : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op U ) : ~H --> ~H ) | 
						
							| 7 |  | hoaddcom |  |-  ( ( T : ~H --> ~H /\ ( S -op U ) : ~H --> ~H ) -> ( T +op ( S -op U ) ) = ( ( S -op U ) +op T ) ) | 
						
							| 8 | 7 | ex |  |-  ( T : ~H --> ~H -> ( ( S -op U ) : ~H --> ~H -> ( T +op ( S -op U ) ) = ( ( S -op U ) +op T ) ) ) | 
						
							| 9 | 6 8 | syl5 |  |-  ( T : ~H --> ~H -> ( ( S : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op ( S -op U ) ) = ( ( S -op U ) +op T ) ) ) | 
						
							| 10 | 9 | expd |  |-  ( T : ~H --> ~H -> ( S : ~H --> ~H -> ( U : ~H --> ~H -> ( T +op ( S -op U ) ) = ( ( S -op U ) +op T ) ) ) ) | 
						
							| 11 | 10 | com12 |  |-  ( S : ~H --> ~H -> ( T : ~H --> ~H -> ( U : ~H --> ~H -> ( T +op ( S -op U ) ) = ( ( S -op U ) +op T ) ) ) ) | 
						
							| 12 | 11 | 3imp |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op ( S -op U ) ) = ( ( S -op U ) +op T ) ) | 
						
							| 13 | 3 5 12 | 3eqtrd |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( ( S -op U ) +op T ) ) |