| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ho0f |  |-  0hop : ~H --> ~H | 
						
							| 2 |  | hosubcl |  |-  ( ( 0hop : ~H --> ~H /\ U : ~H --> ~H ) -> ( 0hop -op U ) : ~H --> ~H ) | 
						
							| 3 | 1 2 | mpan |  |-  ( U : ~H --> ~H -> ( 0hop -op U ) : ~H --> ~H ) | 
						
							| 4 |  | hoaddass |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ ( 0hop -op U ) : ~H --> ~H ) -> ( ( S +op T ) +op ( 0hop -op U ) ) = ( S +op ( T +op ( 0hop -op U ) ) ) ) | 
						
							| 5 | 3 4 | syl3an3 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) +op ( 0hop -op U ) ) = ( S +op ( T +op ( 0hop -op U ) ) ) ) | 
						
							| 6 |  | hoaddcl |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) : ~H --> ~H ) | 
						
							| 7 |  | ho0sub |  |-  ( ( ( S +op T ) : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( ( S +op T ) +op ( 0hop -op U ) ) ) | 
						
							| 8 | 6 7 | stoic3 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( ( S +op T ) +op ( 0hop -op U ) ) ) | 
						
							| 9 |  | ho0sub |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T -op U ) = ( T +op ( 0hop -op U ) ) ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T -op U ) = ( T +op ( 0hop -op U ) ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( T -op U ) ) = ( S +op ( T +op ( 0hop -op U ) ) ) ) | 
						
							| 12 | 5 8 11 | 3eqtr4d |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( S +op ( T -op U ) ) ) |