Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
|- 0hop : ~H --> ~H |
2 |
|
hosubcl |
|- ( ( 0hop : ~H --> ~H /\ U : ~H --> ~H ) -> ( 0hop -op U ) : ~H --> ~H ) |
3 |
1 2
|
mpan |
|- ( U : ~H --> ~H -> ( 0hop -op U ) : ~H --> ~H ) |
4 |
|
hoaddass |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ ( 0hop -op U ) : ~H --> ~H ) -> ( ( S +op T ) +op ( 0hop -op U ) ) = ( S +op ( T +op ( 0hop -op U ) ) ) ) |
5 |
3 4
|
syl3an3 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) +op ( 0hop -op U ) ) = ( S +op ( T +op ( 0hop -op U ) ) ) ) |
6 |
|
hoaddcl |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) : ~H --> ~H ) |
7 |
|
ho0sub |
|- ( ( ( S +op T ) : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( ( S +op T ) +op ( 0hop -op U ) ) ) |
8 |
6 7
|
stoic3 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( ( S +op T ) +op ( 0hop -op U ) ) ) |
9 |
|
ho0sub |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T -op U ) = ( T +op ( 0hop -op U ) ) ) |
10 |
9
|
3adant1 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T -op U ) = ( T +op ( 0hop -op U ) ) ) |
11 |
10
|
oveq2d |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( T -op U ) ) = ( S +op ( T +op ( 0hop -op U ) ) ) ) |
12 |
5 8 11
|
3eqtr4d |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S +op T ) -op U ) = ( S +op ( T -op U ) ) ) |