Metamath Proof Explorer


Theorem hoaddsubassi

Description: Associativity of sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hoaddsubass.1
|- R : ~H --> ~H
hoaddsubass.2
|- S : ~H --> ~H
hoaddsubass.3
|- T : ~H --> ~H
Assertion hoaddsubassi
|- ( ( R +op S ) -op T ) = ( R +op ( S -op T ) )

Proof

Step Hyp Ref Expression
1 hoaddsubass.1
 |-  R : ~H --> ~H
2 hoaddsubass.2
 |-  S : ~H --> ~H
3 hoaddsubass.3
 |-  T : ~H --> ~H
4 hoaddsubass
 |-  ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) -op T ) = ( R +op ( S -op T ) ) )
5 1 2 3 4 mp3an
 |-  ( ( R +op S ) -op T ) = ( R +op ( S -op T ) )