Description: Law for sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hoaddsubass.1 | |- R : ~H --> ~H | |
| hoaddsubass.2 | |- S : ~H --> ~H | ||
| hoaddsubass.3 | |- T : ~H --> ~H | ||
| Assertion | hoaddsubi | |- ( ( R +op S ) -op T ) = ( ( R -op T ) +op S ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hoaddsubass.1 | |- R : ~H --> ~H | |
| 2 | hoaddsubass.2 | |- S : ~H --> ~H | |
| 3 | hoaddsubass.3 | |- T : ~H --> ~H | |
| 4 | 1 2 | hoaddcomi | |- ( R +op S ) = ( S +op R ) | 
| 5 | 4 | oveq1i | |- ( ( R +op S ) -op T ) = ( ( S +op R ) -op T ) | 
| 6 | 2 1 3 | hoaddsubassi | |- ( ( S +op R ) -op T ) = ( S +op ( R -op T ) ) | 
| 7 | 1 3 | hosubcli | |- ( R -op T ) : ~H --> ~H | 
| 8 | 2 7 | hoaddcomi | |- ( S +op ( R -op T ) ) = ( ( R -op T ) +op S ) | 
| 9 | 5 6 8 | 3eqtri | |- ( ( R +op S ) -op T ) = ( ( R -op T ) +op S ) |