Metamath Proof Explorer


Theorem hoaddsubi

Description: Law for sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hoaddsubass.1
|- R : ~H --> ~H
hoaddsubass.2
|- S : ~H --> ~H
hoaddsubass.3
|- T : ~H --> ~H
Assertion hoaddsubi
|- ( ( R +op S ) -op T ) = ( ( R -op T ) +op S )

Proof

Step Hyp Ref Expression
1 hoaddsubass.1
 |-  R : ~H --> ~H
2 hoaddsubass.2
 |-  S : ~H --> ~H
3 hoaddsubass.3
 |-  T : ~H --> ~H
4 1 2 hoaddcomi
 |-  ( R +op S ) = ( S +op R )
5 4 oveq1i
 |-  ( ( R +op S ) -op T ) = ( ( S +op R ) -op T )
6 2 1 3 hoaddsubassi
 |-  ( ( S +op R ) -op T ) = ( S +op ( R -op T ) )
7 1 3 hosubcli
 |-  ( R -op T ) : ~H --> ~H
8 2 7 hoaddcomi
 |-  ( S +op ( R -op T ) ) = ( ( R -op T ) +op S )
9 5 6 8 3eqtri
 |-  ( ( R +op S ) -op T ) = ( ( R -op T ) +op S )