Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hoeq.1 | |- S : ~H --> ~H | |
| hoeq.2 | |- T : ~H --> ~H | ||
| Assertion | hococli | |- ( A e. ~H -> ( ( S o. T ) ` A ) e. ~H ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hoeq.1 | |- S : ~H --> ~H | |
| 2 | hoeq.2 | |- T : ~H --> ~H | |
| 3 | 1 2 | hocoi | |- ( A e. ~H -> ( ( S o. T ) ` A ) = ( S ` ( T ` A ) ) ) | 
| 4 | 2 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. ~H ) | 
| 5 | 1 | ffvelcdmi | |- ( ( T ` A ) e. ~H -> ( S ` ( T ` A ) ) e. ~H ) | 
| 6 | 4 5 | syl | |- ( A e. ~H -> ( S ` ( T ` A ) ) e. ~H ) | 
| 7 | 3 6 | eqeltrd | |- ( A e. ~H -> ( ( S o. T ) ` A ) e. ~H ) |