Metamath Proof Explorer


Theorem hococli

Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1
|- S : ~H --> ~H
hoeq.2
|- T : ~H --> ~H
Assertion hococli
|- ( A e. ~H -> ( ( S o. T ) ` A ) e. ~H )

Proof

Step Hyp Ref Expression
1 hoeq.1
 |-  S : ~H --> ~H
2 hoeq.2
 |-  T : ~H --> ~H
3 1 2 hocoi
 |-  ( A e. ~H -> ( ( S o. T ) ` A ) = ( S ` ( T ` A ) ) )
4 2 ffvelrni
 |-  ( A e. ~H -> ( T ` A ) e. ~H )
5 1 ffvelrni
 |-  ( ( T ` A ) e. ~H -> ( S ` ( T ` A ) ) e. ~H )
6 4 5 syl
 |-  ( A e. ~H -> ( S ` ( T ` A ) ) e. ~H )
7 3 6 eqeltrd
 |-  ( A e. ~H -> ( ( S o. T ) ` A ) e. ~H )