Metamath Proof Explorer


Theorem hocofni

Description: Functionality of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1
|- S : ~H --> ~H
hoeq.2
|- T : ~H --> ~H
Assertion hocofni
|- ( S o. T ) Fn ~H

Proof

Step Hyp Ref Expression
1 hoeq.1
 |-  S : ~H --> ~H
2 hoeq.2
 |-  T : ~H --> ~H
3 1 2 hocofi
 |-  ( S o. T ) : ~H --> ~H
4 ffn
 |-  ( ( S o. T ) : ~H --> ~H -> ( S o. T ) Fn ~H )
5 3 4 ax-mp
 |-  ( S o. T ) Fn ~H