Metamath Proof Explorer


Theorem hocoi

Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1
|- S : ~H --> ~H
hoeq.2
|- T : ~H --> ~H
Assertion hocoi
|- ( A e. ~H -> ( ( S o. T ) ` A ) = ( S ` ( T ` A ) ) )

Proof

Step Hyp Ref Expression
1 hoeq.1
 |-  S : ~H --> ~H
2 hoeq.2
 |-  T : ~H --> ~H
3 fvco3
 |-  ( ( T : ~H --> ~H /\ A e. ~H ) -> ( ( S o. T ) ` A ) = ( S ` ( T ` A ) ) )
4 2 3 mpan
 |-  ( A e. ~H -> ( ( S o. T ) ` A ) = ( S ` ( T ` A ) ) )