Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hoeq.1 | |- S : ~H --> ~H |
|
hoeq.2 | |- T : ~H --> ~H |
||
Assertion | hocoi | |- ( A e. ~H -> ( ( S o. T ) ` A ) = ( S ` ( T ` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | |- S : ~H --> ~H |
|
2 | hoeq.2 | |- T : ~H --> ~H |
|
3 | fvco3 | |- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( ( S o. T ) ` A ) = ( S ` ( T ` A ) ) ) |
|
4 | 2 3 | mpan | |- ( A e. ~H -> ( ( S o. T ) ` A ) = ( S ` ( T ` A ) ) ) |