Step |
Hyp |
Ref |
Expression |
1 |
|
hodval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S -op T ) ` A ) = ( ( S ` A ) -h ( T ` A ) ) ) |
2 |
|
ffvelrn |
|- ( ( S : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) |
3 |
2
|
3adant2 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) |
4 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
5 |
4
|
3adant1 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
6 |
|
hvsubcl |
|- ( ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( S ` A ) -h ( T ` A ) ) e. ~H ) |
7 |
3 5 6
|
syl2anc |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S ` A ) -h ( T ` A ) ) e. ~H ) |
8 |
1 7
|
eqeltrd |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S -op T ) ` A ) e. ~H ) |
9 |
8
|
3expa |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S -op T ) ` A ) e. ~H ) |