| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hodval |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S -op T ) ` A ) = ( ( S ` A ) -h ( T ` A ) ) ) | 
						
							| 2 |  | ffvelcdm |  |-  ( ( S : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) | 
						
							| 3 | 2 | 3adant2 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) | 
						
							| 4 |  | ffvelcdm |  |-  ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) | 
						
							| 5 | 4 | 3adant1 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) | 
						
							| 6 |  | hvsubcl |  |-  ( ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( S ` A ) -h ( T ` A ) ) e. ~H ) | 
						
							| 7 | 3 5 6 | syl2anc |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S ` A ) -h ( T ` A ) ) e. ~H ) | 
						
							| 8 | 1 7 | eqeltrd |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S -op T ) ` A ) e. ~H ) | 
						
							| 9 | 8 | 3expa |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S -op T ) ` A ) e. ~H ) |