Metamath Proof Explorer


Theorem hoddii

Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri does not require linearity.) (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hoddi.1
|- R e. LinOp
hoddi.2
|- S : ~H --> ~H
hoddi.3
|- T : ~H --> ~H
Assertion hoddii
|- ( R o. ( S -op T ) ) = ( ( R o. S ) -op ( R o. T ) )

Proof

Step Hyp Ref Expression
1 hoddi.1
 |-  R e. LinOp
2 hoddi.2
 |-  S : ~H --> ~H
3 hoddi.3
 |-  T : ~H --> ~H
4 2 ffvelrni
 |-  ( x e. ~H -> ( S ` x ) e. ~H )
5 3 ffvelrni
 |-  ( x e. ~H -> ( T ` x ) e. ~H )
6 1 lnopsubi
 |-  ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( R ` ( ( S ` x ) -h ( T ` x ) ) ) = ( ( R ` ( S ` x ) ) -h ( R ` ( T ` x ) ) ) )
7 4 5 6 syl2anc
 |-  ( x e. ~H -> ( R ` ( ( S ` x ) -h ( T ` x ) ) ) = ( ( R ` ( S ` x ) ) -h ( R ` ( T ` x ) ) ) )
8 hodval
 |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) )
9 2 3 8 mp3an12
 |-  ( x e. ~H -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) )
10 9 fveq2d
 |-  ( x e. ~H -> ( R ` ( ( S -op T ) ` x ) ) = ( R ` ( ( S ` x ) -h ( T ` x ) ) ) )
11 1 lnopfi
 |-  R : ~H --> ~H
12 11 2 hocoi
 |-  ( x e. ~H -> ( ( R o. S ) ` x ) = ( R ` ( S ` x ) ) )
13 11 3 hocoi
 |-  ( x e. ~H -> ( ( R o. T ) ` x ) = ( R ` ( T ` x ) ) )
14 12 13 oveq12d
 |-  ( x e. ~H -> ( ( ( R o. S ) ` x ) -h ( ( R o. T ) ` x ) ) = ( ( R ` ( S ` x ) ) -h ( R ` ( T ` x ) ) ) )
15 7 10 14 3eqtr4d
 |-  ( x e. ~H -> ( R ` ( ( S -op T ) ` x ) ) = ( ( ( R o. S ) ` x ) -h ( ( R o. T ) ` x ) ) )
16 2 3 hosubcli
 |-  ( S -op T ) : ~H --> ~H
17 11 16 hocoi
 |-  ( x e. ~H -> ( ( R o. ( S -op T ) ) ` x ) = ( R ` ( ( S -op T ) ` x ) ) )
18 11 2 hocofi
 |-  ( R o. S ) : ~H --> ~H
19 11 3 hocofi
 |-  ( R o. T ) : ~H --> ~H
20 hodval
 |-  ( ( ( R o. S ) : ~H --> ~H /\ ( R o. T ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( R o. S ) -op ( R o. T ) ) ` x ) = ( ( ( R o. S ) ` x ) -h ( ( R o. T ) ` x ) ) )
21 18 19 20 mp3an12
 |-  ( x e. ~H -> ( ( ( R o. S ) -op ( R o. T ) ) ` x ) = ( ( ( R o. S ) ` x ) -h ( ( R o. T ) ` x ) ) )
22 15 17 21 3eqtr4d
 |-  ( x e. ~H -> ( ( R o. ( S -op T ) ) ` x ) = ( ( ( R o. S ) -op ( R o. T ) ) ` x ) )
23 22 rgen
 |-  A. x e. ~H ( ( R o. ( S -op T ) ) ` x ) = ( ( ( R o. S ) -op ( R o. T ) ) ` x )
24 11 16 hocofi
 |-  ( R o. ( S -op T ) ) : ~H --> ~H
25 18 19 hosubcli
 |-  ( ( R o. S ) -op ( R o. T ) ) : ~H --> ~H
26 24 25 hoeqi
 |-  ( A. x e. ~H ( ( R o. ( S -op T ) ) ` x ) = ( ( ( R o. S ) -op ( R o. T ) ) ` x ) <-> ( R o. ( S -op T ) ) = ( ( R o. S ) -op ( R o. T ) ) )
27 23 26 mpbi
 |-  ( R o. ( S -op T ) ) = ( ( R o. S ) -op ( R o. T ) )