| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> T = if ( T : ~H --> ~H , T , 0hop ) ) |
| 2 |
1 1
|
oveq12d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( T -op T ) = ( if ( T : ~H --> ~H , T , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) ) |
| 3 |
2
|
eqeq1d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( T -op T ) = 0hop <-> ( if ( T : ~H --> ~H , T , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) = 0hop ) ) |
| 4 |
|
ho0f |
|- 0hop : ~H --> ~H |
| 5 |
4
|
elimf |
|- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
| 6 |
5
|
hodidi |
|- ( if ( T : ~H --> ~H , T , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) = 0hop |
| 7 |
3 6
|
dedth |
|- ( T : ~H --> ~H -> ( T -op T ) = 0hop ) |