Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
|- ~H e. _V |
2 |
1 1
|
elmap |
|- ( S e. ( ~H ^m ~H ) <-> S : ~H --> ~H ) |
3 |
1 1
|
elmap |
|- ( T e. ( ~H ^m ~H ) <-> T : ~H --> ~H ) |
4 |
|
fveq1 |
|- ( f = S -> ( f ` x ) = ( S ` x ) ) |
5 |
4
|
oveq1d |
|- ( f = S -> ( ( f ` x ) -h ( g ` x ) ) = ( ( S ` x ) -h ( g ` x ) ) ) |
6 |
5
|
mpteq2dv |
|- ( f = S -> ( x e. ~H |-> ( ( f ` x ) -h ( g ` x ) ) ) = ( x e. ~H |-> ( ( S ` x ) -h ( g ` x ) ) ) ) |
7 |
|
fveq1 |
|- ( g = T -> ( g ` x ) = ( T ` x ) ) |
8 |
7
|
oveq2d |
|- ( g = T -> ( ( S ` x ) -h ( g ` x ) ) = ( ( S ` x ) -h ( T ` x ) ) ) |
9 |
8
|
mpteq2dv |
|- ( g = T -> ( x e. ~H |-> ( ( S ` x ) -h ( g ` x ) ) ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) ) |
10 |
|
df-hodif |
|- -op = ( f e. ( ~H ^m ~H ) , g e. ( ~H ^m ~H ) |-> ( x e. ~H |-> ( ( f ` x ) -h ( g ` x ) ) ) ) |
11 |
1
|
mptex |
|- ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) e. _V |
12 |
6 9 10 11
|
ovmpo |
|- ( ( S e. ( ~H ^m ~H ) /\ T e. ( ~H ^m ~H ) ) -> ( S -op T ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) ) |
13 |
2 3 12
|
syl2anbr |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S -op T ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) ) |