Metamath Proof Explorer


Theorem hodseqi

Description: Subtraction and addition of equal Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hodseq.2
|- S : ~H --> ~H
hodseq.3
|- T : ~H --> ~H
Assertion hodseqi
|- ( S +op ( T -op S ) ) = T

Proof

Step Hyp Ref Expression
1 hodseq.2
 |-  S : ~H --> ~H
2 hodseq.3
 |-  T : ~H --> ~H
3 eqid
 |-  ( T -op S ) = ( T -op S )
4 2 1 hosubcli
 |-  ( T -op S ) : ~H --> ~H
5 2 1 4 hodsi
 |-  ( ( T -op S ) = ( T -op S ) <-> ( S +op ( T -op S ) ) = T )
6 3 5 mpbi
 |-  ( S +op ( T -op S ) ) = T