| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hods.1 |  |-  R : ~H --> ~H | 
						
							| 2 |  | hods.2 |  |-  S : ~H --> ~H | 
						
							| 3 |  | hods.3 |  |-  T : ~H --> ~H | 
						
							| 4 | 1 | ffvelcdmi |  |-  ( x e. ~H -> ( R ` x ) e. ~H ) | 
						
							| 5 | 2 | ffvelcdmi |  |-  ( x e. ~H -> ( S ` x ) e. ~H ) | 
						
							| 6 | 3 | ffvelcdmi |  |-  ( x e. ~H -> ( T ` x ) e. ~H ) | 
						
							| 7 |  | hvsubadd |  |-  ( ( ( R ` x ) e. ~H /\ ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) | 
						
							| 8 | 4 5 6 7 | syl3anc |  |-  ( x e. ~H -> ( ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) | 
						
							| 9 |  | hodval |  |-  ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( R -op S ) ` x ) = ( ( R ` x ) -h ( S ` x ) ) ) | 
						
							| 10 | 1 2 9 | mp3an12 |  |-  ( x e. ~H -> ( ( R -op S ) ` x ) = ( ( R ` x ) -h ( S ` x ) ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( x e. ~H -> ( ( ( R -op S ) ` x ) = ( T ` x ) <-> ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) ) ) | 
						
							| 12 |  | hosval |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) | 
						
							| 13 | 2 3 12 | mp3an12 |  |-  ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( x e. ~H -> ( ( ( S +op T ) ` x ) = ( R ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) | 
						
							| 15 | 8 11 14 | 3bitr4d |  |-  ( x e. ~H -> ( ( ( R -op S ) ` x ) = ( T ` x ) <-> ( ( S +op T ) ` x ) = ( R ` x ) ) ) | 
						
							| 16 | 15 | ralbiia |  |-  ( A. x e. ~H ( ( R -op S ) ` x ) = ( T ` x ) <-> A. x e. ~H ( ( S +op T ) ` x ) = ( R ` x ) ) | 
						
							| 17 | 1 2 | hosubcli |  |-  ( R -op S ) : ~H --> ~H | 
						
							| 18 | 17 3 | hoeqi |  |-  ( A. x e. ~H ( ( R -op S ) ` x ) = ( T ` x ) <-> ( R -op S ) = T ) | 
						
							| 19 | 2 3 | hoaddcli |  |-  ( S +op T ) : ~H --> ~H | 
						
							| 20 | 19 1 | hoeqi |  |-  ( A. x e. ~H ( ( S +op T ) ` x ) = ( R ` x ) <-> ( S +op T ) = R ) | 
						
							| 21 | 16 18 20 | 3bitr3i |  |-  ( ( R -op S ) = T <-> ( S +op T ) = R ) |