| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hods.1 |
|- R : ~H --> ~H |
| 2 |
|
hods.2 |
|- S : ~H --> ~H |
| 3 |
|
hods.3 |
|- T : ~H --> ~H |
| 4 |
1
|
ffvelcdmi |
|- ( x e. ~H -> ( R ` x ) e. ~H ) |
| 5 |
2
|
ffvelcdmi |
|- ( x e. ~H -> ( S ` x ) e. ~H ) |
| 6 |
3
|
ffvelcdmi |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 7 |
|
hvsubadd |
|- ( ( ( R ` x ) e. ~H /\ ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
| 8 |
4 5 6 7
|
syl3anc |
|- ( x e. ~H -> ( ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
| 9 |
|
hodval |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( R -op S ) ` x ) = ( ( R ` x ) -h ( S ` x ) ) ) |
| 10 |
1 2 9
|
mp3an12 |
|- ( x e. ~H -> ( ( R -op S ) ` x ) = ( ( R ` x ) -h ( S ` x ) ) ) |
| 11 |
10
|
eqeq1d |
|- ( x e. ~H -> ( ( ( R -op S ) ` x ) = ( T ` x ) <-> ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) ) ) |
| 12 |
|
hosval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
| 13 |
2 3 12
|
mp3an12 |
|- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
| 14 |
13
|
eqeq1d |
|- ( x e. ~H -> ( ( ( S +op T ) ` x ) = ( R ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
| 15 |
8 11 14
|
3bitr4d |
|- ( x e. ~H -> ( ( ( R -op S ) ` x ) = ( T ` x ) <-> ( ( S +op T ) ` x ) = ( R ` x ) ) ) |
| 16 |
15
|
ralbiia |
|- ( A. x e. ~H ( ( R -op S ) ` x ) = ( T ` x ) <-> A. x e. ~H ( ( S +op T ) ` x ) = ( R ` x ) ) |
| 17 |
1 2
|
hosubcli |
|- ( R -op S ) : ~H --> ~H |
| 18 |
17 3
|
hoeqi |
|- ( A. x e. ~H ( ( R -op S ) ` x ) = ( T ` x ) <-> ( R -op S ) = T ) |
| 19 |
2 3
|
hoaddcli |
|- ( S +op T ) : ~H --> ~H |
| 20 |
19 1
|
hoeqi |
|- ( A. x e. ~H ( ( S +op T ) ` x ) = ( R ` x ) <-> ( S +op T ) = R ) |
| 21 |
16 18 20
|
3bitr3i |
|- ( ( R -op S ) = T <-> ( S +op T ) = R ) |