Step |
Hyp |
Ref |
Expression |
1 |
|
hods.1 |
|- R : ~H --> ~H |
2 |
|
hods.2 |
|- S : ~H --> ~H |
3 |
|
hods.3 |
|- T : ~H --> ~H |
4 |
1
|
ffvelrni |
|- ( x e. ~H -> ( R ` x ) e. ~H ) |
5 |
2
|
ffvelrni |
|- ( x e. ~H -> ( S ` x ) e. ~H ) |
6 |
3
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
7 |
|
hvsubadd |
|- ( ( ( R ` x ) e. ~H /\ ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
8 |
4 5 6 7
|
syl3anc |
|- ( x e. ~H -> ( ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
9 |
|
hodval |
|- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( R -op S ) ` x ) = ( ( R ` x ) -h ( S ` x ) ) ) |
10 |
1 2 9
|
mp3an12 |
|- ( x e. ~H -> ( ( R -op S ) ` x ) = ( ( R ` x ) -h ( S ` x ) ) ) |
11 |
10
|
eqeq1d |
|- ( x e. ~H -> ( ( ( R -op S ) ` x ) = ( T ` x ) <-> ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) ) ) |
12 |
|
hosval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
13 |
2 3 12
|
mp3an12 |
|- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
14 |
13
|
eqeq1d |
|- ( x e. ~H -> ( ( ( S +op T ) ` x ) = ( R ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
15 |
8 11 14
|
3bitr4d |
|- ( x e. ~H -> ( ( ( R -op S ) ` x ) = ( T ` x ) <-> ( ( S +op T ) ` x ) = ( R ` x ) ) ) |
16 |
15
|
ralbiia |
|- ( A. x e. ~H ( ( R -op S ) ` x ) = ( T ` x ) <-> A. x e. ~H ( ( S +op T ) ` x ) = ( R ` x ) ) |
17 |
1 2
|
hosubcli |
|- ( R -op S ) : ~H --> ~H |
18 |
17 3
|
hoeqi |
|- ( A. x e. ~H ( ( R -op S ) ` x ) = ( T ` x ) <-> ( R -op S ) = T ) |
19 |
2 3
|
hoaddcli |
|- ( S +op T ) : ~H --> ~H |
20 |
19 1
|
hoeqi |
|- ( A. x e. ~H ( ( S +op T ) ` x ) = ( R ` x ) <-> ( S +op T ) = R ) |
21 |
16 18 20
|
3bitr3i |
|- ( ( R -op S ) = T <-> ( S +op T ) = R ) |