Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoeq | |- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A. x e. ~H ( T ` x ) = ( U ` x ) <-> T = U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( T : ~H --> ~H -> T Fn ~H ) |
|
| 2 | ffn | |- ( U : ~H --> ~H -> U Fn ~H ) |
|
| 3 | eqfnfv | |- ( ( T Fn ~H /\ U Fn ~H ) -> ( T = U <-> A. x e. ~H ( T ` x ) = ( U ` x ) ) ) |
|
| 4 | 3 | bicomd | |- ( ( T Fn ~H /\ U Fn ~H ) -> ( A. x e. ~H ( T ` x ) = ( U ` x ) <-> T = U ) ) |
| 5 | 1 2 4 | syl2an | |- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A. x e. ~H ( T ` x ) = ( U ` x ) <-> T = U ) ) |