Metamath Proof Explorer


Theorem hoeq

Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoeq
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A. x e. ~H ( T ` x ) = ( U ` x ) <-> T = U ) )

Proof

Step Hyp Ref Expression
1 ffn
 |-  ( T : ~H --> ~H -> T Fn ~H )
2 ffn
 |-  ( U : ~H --> ~H -> U Fn ~H )
3 eqfnfv
 |-  ( ( T Fn ~H /\ U Fn ~H ) -> ( T = U <-> A. x e. ~H ( T ` x ) = ( U ` x ) ) )
4 3 bicomd
 |-  ( ( T Fn ~H /\ U Fn ~H ) -> ( A. x e. ~H ( T ` x ) = ( U ` x ) <-> T = U ) )
5 1 2 4 syl2an
 |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A. x e. ~H ( T ` x ) = ( U ` x ) <-> T = U ) )