Metamath Proof Explorer


Theorem hoeqi

Description: Equality of Hilbert space operators. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1
|- S : ~H --> ~H
hoeq.2
|- T : ~H --> ~H
Assertion hoeqi
|- ( A. x e. ~H ( S ` x ) = ( T ` x ) <-> S = T )

Proof

Step Hyp Ref Expression
1 hoeq.1
 |-  S : ~H --> ~H
2 hoeq.2
 |-  T : ~H --> ~H
3 hoeq
 |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( A. x e. ~H ( S ` x ) = ( T ` x ) <-> S = T ) )
4 1 2 3 mp2an
 |-  ( A. x e. ~H ( S ` x ) = ( T ` x ) <-> S = T )