| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoaddrid.1 |  |-  T : ~H --> ~H | 
						
							| 2 |  | df-iop |  |-  Iop = ( projh ` ~H ) | 
						
							| 3 | 2 | coeq2i |  |-  ( T o. Iop ) = ( T o. ( projh ` ~H ) ) | 
						
							| 4 |  | helch |  |-  ~H e. CH | 
						
							| 5 | 4 | pjfi |  |-  ( projh ` ~H ) : ~H --> ~H | 
						
							| 6 | 1 5 | hocoi |  |-  ( x e. ~H -> ( ( T o. ( projh ` ~H ) ) ` x ) = ( T ` ( ( projh ` ~H ) ` x ) ) ) | 
						
							| 7 |  | pjch1 |  |-  ( x e. ~H -> ( ( projh ` ~H ) ` x ) = x ) | 
						
							| 8 | 7 | fveq2d |  |-  ( x e. ~H -> ( T ` ( ( projh ` ~H ) ` x ) ) = ( T ` x ) ) | 
						
							| 9 | 6 8 | eqtrd |  |-  ( x e. ~H -> ( ( T o. ( projh ` ~H ) ) ` x ) = ( T ` x ) ) | 
						
							| 10 | 9 | rgen |  |-  A. x e. ~H ( ( T o. ( projh ` ~H ) ) ` x ) = ( T ` x ) | 
						
							| 11 | 1 5 | hocofi |  |-  ( T o. ( projh ` ~H ) ) : ~H --> ~H | 
						
							| 12 | 11 1 | hoeqi |  |-  ( A. x e. ~H ( ( T o. ( projh ` ~H ) ) ` x ) = ( T ` x ) <-> ( T o. ( projh ` ~H ) ) = T ) | 
						
							| 13 | 10 12 | mpbi |  |-  ( T o. ( projh ` ~H ) ) = T | 
						
							| 14 | 3 13 | eqtri |  |-  ( T o. Iop ) = T |