Step |
Hyp |
Ref |
Expression |
1 |
|
hoaddid1.1 |
|- T : ~H --> ~H |
2 |
|
df-iop |
|- Iop = ( projh ` ~H ) |
3 |
2
|
coeq2i |
|- ( T o. Iop ) = ( T o. ( projh ` ~H ) ) |
4 |
|
helch |
|- ~H e. CH |
5 |
4
|
pjfi |
|- ( projh ` ~H ) : ~H --> ~H |
6 |
1 5
|
hocoi |
|- ( x e. ~H -> ( ( T o. ( projh ` ~H ) ) ` x ) = ( T ` ( ( projh ` ~H ) ` x ) ) ) |
7 |
|
pjch1 |
|- ( x e. ~H -> ( ( projh ` ~H ) ` x ) = x ) |
8 |
7
|
fveq2d |
|- ( x e. ~H -> ( T ` ( ( projh ` ~H ) ` x ) ) = ( T ` x ) ) |
9 |
6 8
|
eqtrd |
|- ( x e. ~H -> ( ( T o. ( projh ` ~H ) ) ` x ) = ( T ` x ) ) |
10 |
9
|
rgen |
|- A. x e. ~H ( ( T o. ( projh ` ~H ) ) ` x ) = ( T ` x ) |
11 |
1 5
|
hocofi |
|- ( T o. ( projh ` ~H ) ) : ~H --> ~H |
12 |
11 1
|
hoeqi |
|- ( A. x e. ~H ( ( T o. ( projh ` ~H ) ) ` x ) = ( T ` x ) <-> ( T o. ( projh ` ~H ) ) = T ) |
13 |
10 12
|
mpbi |
|- ( T o. ( projh ` ~H ) ) = T |
14 |
3 13
|
eqtri |
|- ( T o. Iop ) = T |