Step |
Hyp |
Ref |
Expression |
1 |
|
hoaddid1.1 |
|- T : ~H --> ~H |
2 |
|
df-iop |
|- Iop = ( projh ` ~H ) |
3 |
2
|
coeq1i |
|- ( Iop o. T ) = ( ( projh ` ~H ) o. T ) |
4 |
|
helch |
|- ~H e. CH |
5 |
4
|
pjfi |
|- ( projh ` ~H ) : ~H --> ~H |
6 |
5 1
|
hocoi |
|- ( x e. ~H -> ( ( ( projh ` ~H ) o. T ) ` x ) = ( ( projh ` ~H ) ` ( T ` x ) ) ) |
7 |
1
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
8 |
|
pjch1 |
|- ( ( T ` x ) e. ~H -> ( ( projh ` ~H ) ` ( T ` x ) ) = ( T ` x ) ) |
9 |
7 8
|
syl |
|- ( x e. ~H -> ( ( projh ` ~H ) ` ( T ` x ) ) = ( T ` x ) ) |
10 |
6 9
|
eqtrd |
|- ( x e. ~H -> ( ( ( projh ` ~H ) o. T ) ` x ) = ( T ` x ) ) |
11 |
10
|
rgen |
|- A. x e. ~H ( ( ( projh ` ~H ) o. T ) ` x ) = ( T ` x ) |
12 |
5 1
|
hocofi |
|- ( ( projh ` ~H ) o. T ) : ~H --> ~H |
13 |
12 1
|
hoeqi |
|- ( A. x e. ~H ( ( ( projh ` ~H ) o. T ) ` x ) = ( T ` x ) <-> ( ( projh ` ~H ) o. T ) = T ) |
14 |
11 13
|
mpbi |
|- ( ( projh ` ~H ) o. T ) = T |
15 |
3 14
|
eqtri |
|- ( Iop o. T ) = T |