Step |
Hyp |
Ref |
Expression |
1 |
|
homahom.h |
|- H = ( HomA ` C ) |
2 |
|
df-br |
|- ( Z ( X H Y ) F <-> <. Z , F >. e. ( X H Y ) ) |
3 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
4 |
1
|
homarcl |
|- ( <. Z , F >. e. ( X H Y ) -> C e. Cat ) |
5 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
6 |
1 3
|
homarcl2 |
|- ( <. Z , F >. e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
7 |
6
|
simpld |
|- ( <. Z , F >. e. ( X H Y ) -> X e. ( Base ` C ) ) |
8 |
6
|
simprd |
|- ( <. Z , F >. e. ( X H Y ) -> Y e. ( Base ` C ) ) |
9 |
1 3 4 5 7 8
|
elhoma |
|- ( <. Z , F >. e. ( X H Y ) -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) ) ) |
10 |
2 9
|
sylbi |
|- ( Z ( X H Y ) F -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) ) ) |
11 |
10
|
ibi |
|- ( Z ( X H Y ) F -> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) ) |
12 |
11
|
simpld |
|- ( Z ( X H Y ) F -> Z = <. X , Y >. ) |