| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							homahom.h | 
							 |-  H = ( HomA ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							df-br | 
							 |-  ( Z ( X H Y ) F <-> <. Z , F >. e. ( X H Y ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 4 | 
							
								1
							 | 
							homarcl | 
							 |-  ( <. Z , F >. e. ( X H Y ) -> C e. Cat )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 6 | 
							
								1 3
							 | 
							homarcl2 | 
							 |-  ( <. Z , F >. e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simpld | 
							 |-  ( <. Z , F >. e. ( X H Y ) -> X e. ( Base ` C ) )  | 
						
						
							| 8 | 
							
								6
							 | 
							simprd | 
							 |-  ( <. Z , F >. e. ( X H Y ) -> Y e. ( Base ` C ) )  | 
						
						
							| 9 | 
							
								1 3 4 5 7 8
							 | 
							elhoma | 
							 |-  ( <. Z , F >. e. ( X H Y ) -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) ) )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							sylbi | 
							 |-  ( Z ( X H Y ) F -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ibi | 
							 |-  ( Z ( X H Y ) F -> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simpld | 
							 |-  ( Z ( X H Y ) F -> Z = <. X , Y >. )  |