| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							homahom.h | 
							 |-  H = ( HomA ` C )  | 
						
						
							| 2 | 
							
								1
							 | 
							homarel | 
							 |-  Rel ( X H Y )  | 
						
						
							| 3 | 
							
								
							 | 
							1st2nd | 
							 |-  ( ( Rel ( X H Y ) /\ F e. ( X H Y ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpan | 
							 |-  ( F e. ( X H Y ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. )  | 
						
						
							| 5 | 
							
								
							 | 
							1st2ndbr | 
							 |-  ( ( Rel ( X H Y ) /\ F e. ( X H Y ) ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							mpan | 
							 |-  ( F e. ( X H Y ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							homa1 | 
							 |-  ( ( 1st ` F ) ( X H Y ) ( 2nd ` F ) -> ( 1st ` F ) = <. X , Y >. )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							 |-  ( F e. ( X H Y ) -> ( 1st ` F ) = <. X , Y >. )  | 
						
						
							| 9 | 
							
								8
							 | 
							opeq1d | 
							 |-  ( F e. ( X H Y ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. = <. <. X , Y >. , ( 2nd ` F ) >. )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							eqtrd | 
							 |-  ( F e. ( X H Y ) -> F = <. <. X , Y >. , ( 2nd ` F ) >. )  | 
						
						
							| 11 | 
							
								
							 | 
							df-ot | 
							 |-  <. X , Y , ( 2nd ` F ) >. = <. <. X , Y >. , ( 2nd ` F ) >.  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtr4di | 
							 |-  ( F e. ( X H Y ) -> F = <. X , Y , ( 2nd ` F ) >. )  |