Metamath Proof Explorer


Theorem homaf

Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h
|- H = ( HomA ` C )
homafval.b
|- B = ( Base ` C )
homafval.c
|- ( ph -> C e. Cat )
Assertion homaf
|- ( ph -> H : ( B X. B ) --> ~P ( ( B X. B ) X. _V ) )

Proof

Step Hyp Ref Expression
1 homarcl.h
 |-  H = ( HomA ` C )
2 homafval.b
 |-  B = ( Base ` C )
3 homafval.c
 |-  ( ph -> C e. Cat )
4 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
5 1 2 3 4 homafval
 |-  ( ph -> H = ( x e. ( B X. B ) |-> ( { x } X. ( ( Hom ` C ) ` x ) ) ) )
6 snssi
 |-  ( x e. ( B X. B ) -> { x } C_ ( B X. B ) )
7 6 adantl
 |-  ( ( ph /\ x e. ( B X. B ) ) -> { x } C_ ( B X. B ) )
8 ssv
 |-  ( ( Hom ` C ) ` x ) C_ _V
9 xpss12
 |-  ( ( { x } C_ ( B X. B ) /\ ( ( Hom ` C ) ` x ) C_ _V ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) )
10 7 8 9 sylancl
 |-  ( ( ph /\ x e. ( B X. B ) ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) )
11 snex
 |-  { x } e. _V
12 fvex
 |-  ( ( Hom ` C ) ` x ) e. _V
13 11 12 xpex
 |-  ( { x } X. ( ( Hom ` C ) ` x ) ) e. _V
14 13 elpw
 |-  ( ( { x } X. ( ( Hom ` C ) ` x ) ) e. ~P ( ( B X. B ) X. _V ) <-> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) )
15 10 14 sylibr
 |-  ( ( ph /\ x e. ( B X. B ) ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) e. ~P ( ( B X. B ) X. _V ) )
16 5 15 fmpt3d
 |-  ( ph -> H : ( B X. B ) --> ~P ( ( B X. B ) X. _V ) )