| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homarcl.h |
|- H = ( HomA ` C ) |
| 2 |
|
homafval.b |
|- B = ( Base ` C ) |
| 3 |
|
homafval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 5 |
1 2 3 4
|
homafval |
|- ( ph -> H = ( x e. ( B X. B ) |-> ( { x } X. ( ( Hom ` C ) ` x ) ) ) ) |
| 6 |
|
snssi |
|- ( x e. ( B X. B ) -> { x } C_ ( B X. B ) ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ x e. ( B X. B ) ) -> { x } C_ ( B X. B ) ) |
| 8 |
|
ssv |
|- ( ( Hom ` C ) ` x ) C_ _V |
| 9 |
|
xpss12 |
|- ( ( { x } C_ ( B X. B ) /\ ( ( Hom ` C ) ` x ) C_ _V ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) ) |
| 10 |
7 8 9
|
sylancl |
|- ( ( ph /\ x e. ( B X. B ) ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) ) |
| 11 |
|
vsnex |
|- { x } e. _V |
| 12 |
|
fvex |
|- ( ( Hom ` C ) ` x ) e. _V |
| 13 |
11 12
|
xpex |
|- ( { x } X. ( ( Hom ` C ) ` x ) ) e. _V |
| 14 |
13
|
elpw |
|- ( ( { x } X. ( ( Hom ` C ) ` x ) ) e. ~P ( ( B X. B ) X. _V ) <-> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) ) |
| 15 |
10 14
|
sylibr |
|- ( ( ph /\ x e. ( B X. B ) ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) e. ~P ( ( B X. B ) X. _V ) ) |
| 16 |
5 15
|
fmpt3d |
|- ( ph -> H : ( B X. B ) --> ~P ( ( B X. B ) X. _V ) ) |