Metamath Proof Explorer


Theorem homarcl

Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis homarcl.h
|- H = ( HomA ` C )
Assertion homarcl
|- ( F e. ( X H Y ) -> C e. Cat )

Proof

Step Hyp Ref Expression
1 homarcl.h
 |-  H = ( HomA ` C )
2 n0i
 |-  ( F e. ( X H Y ) -> -. ( X H Y ) = (/) )
3 df-homa
 |-  HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) )
4 3 fvmptndm
 |-  ( -. C e. Cat -> ( HomA ` C ) = (/) )
5 1 4 eqtrid
 |-  ( -. C e. Cat -> H = (/) )
6 5 oveqd
 |-  ( -. C e. Cat -> ( X H Y ) = ( X (/) Y ) )
7 0ov
 |-  ( X (/) Y ) = (/)
8 6 7 eqtrdi
 |-  ( -. C e. Cat -> ( X H Y ) = (/) )
9 2 8 nsyl2
 |-  ( F e. ( X H Y ) -> C e. Cat )