Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | homarcl.h | |- H = ( HomA ` C ) |
|
Assertion | homarcl | |- ( F e. ( X H Y ) -> C e. Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homarcl.h | |- H = ( HomA ` C ) |
|
2 | n0i | |- ( F e. ( X H Y ) -> -. ( X H Y ) = (/) ) |
|
3 | df-homa | |- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) |
|
4 | 3 | fvmptndm | |- ( -. C e. Cat -> ( HomA ` C ) = (/) ) |
5 | 1 4 | eqtrid | |- ( -. C e. Cat -> H = (/) ) |
6 | 5 | oveqd | |- ( -. C e. Cat -> ( X H Y ) = ( X (/) Y ) ) |
7 | 0ov | |- ( X (/) Y ) = (/) |
|
8 | 6 7 | eqtrdi | |- ( -. C e. Cat -> ( X H Y ) = (/) ) |
9 | 2 8 | nsyl2 | |- ( F e. ( X H Y ) -> C e. Cat ) |