Metamath Proof Explorer


Theorem homarcl2

Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homahom.h
|- H = ( HomA ` C )
homarcl2.b
|- B = ( Base ` C )
Assertion homarcl2
|- ( F e. ( X H Y ) -> ( X e. B /\ Y e. B ) )

Proof

Step Hyp Ref Expression
1 homahom.h
 |-  H = ( HomA ` C )
2 homarcl2.b
 |-  B = ( Base ` C )
3 elfvdm
 |-  ( F e. ( H ` <. X , Y >. ) -> <. X , Y >. e. dom H )
4 df-ov
 |-  ( X H Y ) = ( H ` <. X , Y >. )
5 3 4 eleq2s
 |-  ( F e. ( X H Y ) -> <. X , Y >. e. dom H )
6 1 homarcl
 |-  ( F e. ( X H Y ) -> C e. Cat )
7 1 2 6 homaf
 |-  ( F e. ( X H Y ) -> H : ( B X. B ) --> ~P ( ( B X. B ) X. _V ) )
8 7 fdmd
 |-  ( F e. ( X H Y ) -> dom H = ( B X. B ) )
9 5 8 eleqtrd
 |-  ( F e. ( X H Y ) -> <. X , Y >. e. ( B X. B ) )
10 opelxp
 |-  ( <. X , Y >. e. ( B X. B ) <-> ( X e. B /\ Y e. B ) )
11 9 10 sylib
 |-  ( F e. ( X H Y ) -> ( X e. B /\ Y e. B ) )