Step |
Hyp |
Ref |
Expression |
1 |
|
homahom.h |
|- H = ( HomA ` C ) |
2 |
|
homarcl2.b |
|- B = ( Base ` C ) |
3 |
|
elfvdm |
|- ( F e. ( H ` <. X , Y >. ) -> <. X , Y >. e. dom H ) |
4 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
5 |
3 4
|
eleq2s |
|- ( F e. ( X H Y ) -> <. X , Y >. e. dom H ) |
6 |
1
|
homarcl |
|- ( F e. ( X H Y ) -> C e. Cat ) |
7 |
1 2 6
|
homaf |
|- ( F e. ( X H Y ) -> H : ( B X. B ) --> ~P ( ( B X. B ) X. _V ) ) |
8 |
7
|
fdmd |
|- ( F e. ( X H Y ) -> dom H = ( B X. B ) ) |
9 |
5 8
|
eleqtrd |
|- ( F e. ( X H Y ) -> <. X , Y >. e. ( B X. B ) ) |
10 |
|
opelxp |
|- ( <. X , Y >. e. ( B X. B ) <-> ( X e. B /\ Y e. B ) ) |
11 |
9 10
|
sylib |
|- ( F e. ( X H Y ) -> ( X e. B /\ Y e. B ) ) |