Metamath Proof Explorer
Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
arwrcl.a |
|- A = ( Arrow ` C ) |
|
|
arwhoma.h |
|- H = ( HomA ` C ) |
|
Assertion |
homarw |
|- ( X H Y ) C_ A |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
arwrcl.a |
|- A = ( Arrow ` C ) |
| 2 |
|
arwhoma.h |
|- H = ( HomA ` C ) |
| 3 |
|
ovssunirn |
|- ( X H Y ) C_ U. ran H |
| 4 |
1 2
|
arwval |
|- A = U. ran H |
| 5 |
3 4
|
sseqtrri |
|- ( X H Y ) C_ A |