| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							homarcl.h | 
							 |-  H = ( HomA ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							homafval.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							homafval.c | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							homaval.j | 
							 |-  J = ( Hom ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							homaval.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							homaval.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							df-ov | 
							 |-  ( X H Y ) = ( H ` <. X , Y >. )  | 
						
						
							| 8 | 
							
								1 2 3 4
							 | 
							homafval | 
							 |-  ( ph -> H = ( z e. ( B X. B ) |-> ( { z } X. ( J ` z ) ) ) ) | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. )  | 
						
						
							| 10 | 
							
								9
							 | 
							sneqd | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> { z } = { <. X , Y >. } ) | 
						
						
							| 11 | 
							
								9
							 | 
							fveq2d | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> ( J ` z ) = ( J ` <. X , Y >. ) )  | 
						
						
							| 12 | 
							
								
							 | 
							df-ov | 
							 |-  ( X J Y ) = ( J ` <. X , Y >. )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> ( J ` z ) = ( X J Y ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							xpeq12d | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> ( { z } X. ( J ` z ) ) = ( { <. X , Y >. } X. ( X J Y ) ) ) | 
						
						
							| 15 | 
							
								5 6
							 | 
							opelxpd | 
							 |-  ( ph -> <. X , Y >. e. ( B X. B ) )  | 
						
						
							| 16 | 
							
								
							 | 
							snex | 
							 |-  { <. X , Y >. } e. _V | 
						
						
							| 17 | 
							
								
							 | 
							ovex | 
							 |-  ( X J Y ) e. _V  | 
						
						
							| 18 | 
							
								16 17
							 | 
							xpex | 
							 |-  ( { <. X , Y >. } X. ( X J Y ) ) e. _V | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							 |-  ( ph -> ( { <. X , Y >. } X. ( X J Y ) ) e. _V ) | 
						
						
							| 20 | 
							
								8 14 15 19
							 | 
							fvmptd | 
							 |-  ( ph -> ( H ` <. X , Y >. ) = ( { <. X , Y >. } X. ( X J Y ) ) ) | 
						
						
							| 21 | 
							
								7 20
							 | 
							eqtrid | 
							 |-  ( ph -> ( X H Y ) = ( { <. X , Y >. } X. ( X J Y ) ) ) |